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ZusammenfassungEin dreidimensionales, numerishes Strömungsmodell wurde mit einem Sedi-menttransport und einem Modell zur Analyse der Bodenstabilität gekoppelt. DasStrömungsmodell ist in der Lage Berehnungen mit und ohne freier Ober�ähedurhzuführen, wodurh stationäre Strömungen wie auh propagierende Wellenund die daraus resultierende Strömung im Nahbereih eines Bauwerks simuliertwerden kann. Das Modell basiert auf den Reynold's gemittelten Navier-StokesGleihungen, wobei die Shlieÿung des Gleihungssystems mit dem k-ω(SST) Mo-dell durhgeführt wurde.Die vom Strömungsmodell berehneten Shubspannungen am Boden werdenan das Sedimenttransportmodell übergeben und mit diesen die Bodenevolutions-gleihung gelöst. Die Geometrie des sih verändernden Bodens wird nah einer fest-gelegten Dauer an das Strömungsmodell zurükgegeben, worauf eine Aktualisie-rung der Strömungsergebnisse durhgeführt wird. Da sih bei der Umströmung vonBauwerken lokal erhöhte Shubspannungen ergeben, führt dies zu einem intensivenSedimenttransport und zur Bildung eines Kolkes. Die auftretenden steilen Boden-gradienten werden in den Gleihungen zur Berehnung der Sedimentransportratedurh zusätzlihe Ansätze berüksihtigt. Eventuell auftretende Sedimentrutsh-ungen werden durh einen Algorithmus simuliert, der Sediment in Rihtung desGefälles umlagert, falls der Neigungswinkel des Bodens den Reibungswinkel über-steigt.Das Sedimenttransportmodell wurde um ein Finite-Elemente Bodenmodell er-weitert, das in der Lage ist, eine Stabilitätsanalyse des Bodens bei Einwirkung desEigengewihts und äuÿerer Lasten durhzuführen. Dadurh können die Bereihebestimmt werden, an denen Sediment- bzw. Hangrutshungen auftreten. Hierbeiwerden mehrere Bodenparameter in die Analyse sowie die Geometrie des Bodensmit einbezogen.Das beshriebene Modell wurde auf vershiedene Laborversuhe mit strömungs-und welleninduziertem Kolk angewendet. Neben einem Zylinder und einem senk-rehten Wandeinbau in einer stationären Strömung, wurden auh Versuhe mitkurzen Wellen (KC<6) sowie langen Wellen (KC>6) zur Validierung des Modellsherangezogen. Weiterhin wurde ein aus einem Wellenspektrum entstandener Kolkim numerishen Modell nahgebildet.
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AbstratA three-dimensional �ow model apable of simulation �ows with or withoutfree surfae was oupled with a model apable of simulating sediment transportand bottom evolution, and a model for analysing soil stability. The �ow modelpresented is apable of simulating a steady �ow or a propagating wave in orderto alulate the �ow �eld in the proximity of a struture. The solver is based onthe Reynold's averaged Navier-Stokes equations, whereas the losure of the set ofequations is ahieved by means of the k-ω(SST) turbulene model.Using the shear stress at the bottom omputed by the �ow model, a sedimenttransport rate may be alulated and subsequently inserted in the bottom evo-lution equation. This leads to an intense sediment transport and thus to sour.Steep slopes will lead to sliding sediment grains when the atual slope angle ex-eeds the frition angle of the sediment. In order to keep the bottom geometry in areasonable shape, an algorithm is used to simulate sliding sediments. Adjustmentsfor the ineption of motion and the sediment transport rate at slopes improve theoriginal equations in suh a way that sand sliding is less intensive with regard tothe number of iterations rquired, even though it is still neessary. The resultingsour geometry is therefore also haraterized by this algorithm, whih dependson one soil parameter.A more general model for determining slope stability was developed and oupledwith the existing �ow and sediment transport model. The bottom is idealised as athree-dimensional solid body and a �nite element analysis is arried out in orderto alulate the erosion zones under given onditions. When determining the slopestability, this approah not only takes aount of the frition angle but also severalother soil parameters as well as the bottom geometry.The model desribed was used to simulate di�erent laboratory experiments of�ow and wave indued sour. A vertial ylinder and an abutment in steady �owonditions were onsidered as well as experiments with short waves (KC<6) andlong waves (KC>6) to validate the model. Furthermore, a sour resulting from awave spetrum was onsidered as test ase for the numerial model.
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1 Introdution
1.1 MotivationAll strutures situated in a maritime- or river-environment are exposed to the �uid�ow that surrounds them. The resulting fores ating on the struture and thesurrounding soil are a result of �ow or wave ation, or the ombination of both.Additional e�ets may inlude e.g. wave di�ration and re�etion, wave breakingor �ow ontration. These e�ets may result in an inreased �ow veloity in theviinity of the struture and hene to higher shear stresses ating on the soil.Assuming that the soil in most ases onsists of sediments that are vulnerable toerosion, an inrease in the �ow will result in inreased sediment transport andsubsequent sour. As indiated by many examples in the past, this may pose aserious threat to the stability of a struture.In order to gain more knowledge onerning the sour proess and the issueof soil stability under the in�uene of �ow, a ombined numerial model of �ow,sediment transport and soil stability analysis has been developed. Whereas the�ow and soil model are three-dimensional, sediment transport and bed evolutionis simulated by means of two-dimensional model. The �ow model is based on theReynold's averaged Navier-Stokes equations with a sheme for alulating the freesurfae. By this means it is possible to analyse a �ow and a wave-indued sour.Averaging the Navier-Stokes equations leads to the turbulene losure problem, i.e.the need for additional equations in order to lose the set of available equations.This is ahieved by using a modi�ed version of the k-ω turbulene model whiho�ers the advantage of simulating boundary-layer �ows with a stagnation pointand adverse pressure gradients.Taking the bottom shear stress omputed by the �ow model as input for the1



1 Introdution
sediment transport model, a time variable bottom topography may be alulatedby means of the bottom evolution equation. The required transport rates areobtained from (semi-)empirial equations based on laboratory experiments. Theonsidered material is sand and the main transport mode is bed-load. The trans-port of suspended sediment is negleted in the presented numerial investigations.Loally inreased shear stress in the proximity of a struture leads to higher trans-port rates and thus to more intense erosion. As a onsequene, a sour withsteadily inreasing slopes will develop. One a slope has been established, thesediment transport is not only driven by shear stress but also by the fore of grav-ity, whih beomes more dominant with an inreasing slope angle. Furthermore,a ollapsing slope with sliding sediment will our when the slope angle attainsthe sediment frition angle. As these sediment movements are only driven by thefore of gravity, they are not taken into aount in the above-mentioned transportrate equations but are treated separately using an algorithm whih ensures thatthe slope angle annot exeed the frition angle. The sediment is otherwise shiftedin the diretion of the slope until a stable ondition is reahed.The slope stability is determined by omparing the atual slope angle withthe frition angle of the used material onerned. This is a valid assumption forhomogeneous, sandy materials whih are preferred in laboratory experiments. Theproperties and distribution of natural soil, however, are far more variable than anbe expressed by a single material parameter. For this reason a more general modelfor determining slope stability was developed and oupled with the existing �owand sediment transport model. The bottom is idealised as a three-dimensionalsolid body and a �nite element analysis is arried out in order to alulate theerosion zones under given onditions. When determining the slope stability, thisapproah not only takes aount of the frition angle but also several other soilparameters as well as the bottom geometry.The model desribed was used to simulate di�erent small and large sale asesinvestigated in laboratory experiments. This overs experiments with a steady�ow as well as ases with waves. Most of the presented material is based on smallsale ases, as large sale sour experiments are rarely available.2



1.2 Literature review
1.2 Literature review1.2.1 Flow modelThe vertial irular ylinder is one of the most widely used geometries for stru-tures in the marine environment whereas river-based buildings are often designedwith an oval ross-setion. Nevertheless the irular ylinder remains the om-monly onsidered ross-setion in theoretial and experimental studies. Flowaround strutures is purely three-dimensional even in the ase of a vertial ylinderwhere the geometry is onstant over the depth. The �ow �eld exhibits di�erente�ets depending on the type of �ow approahing the struture. The e�ets thatmay our suh as, e.g. a stagnation point, �ow ontration and vortex sheddingare not only harateristi for a vertial pile but also for almost all other possibleobjets.Di�erent approahes for modelling the �ow around a irular ylinder may befound in the literature. Reynold's averaged Navier-Stokes equations (RANS) withan adequate losure model and large eddy simulations are the most ommonlyused. In the ase of RANS, turbulene modelling may be performed using a twoequation model suh as the k-ε or the k-ω model. Whereas Olsen and Melaaen(1993) and Olsen and Kjellesvig (1998) applied the �rst method in order to alu-late the �ow for a sour simulation, the latter method was applied in a modi�edform (Menter, 1992) by Weilbeer (2001) and Roulund et al. (2005) for the samepurpose.Although a large eddy simulation is ertainly more aurate for alulating�ow than a RANS model, a onsiderably longer omputation time is required.This makes the method unsuitable for alulations involving longer periods thanare neessary for simulating the sour proess or for alulations involving highReynold's numbers. A subgrid sale model is neessary in order to model theturbulene that is not resolved by the mesh. Several of these inluded in theliterature were studied by Breuer (2000) and Salvatii and Salvetti (2003). Theseand among others Fröhlih and Rodi (2004) and Fröhlih et al. (2003), analysedthe in�uene of spatial disretization on the results. The advantages of using alarge eddy simulation were demonstrated by Catalano et al. (2003). By omparing3



1 Introdution
the results of the latter with the results obtained from a alulation using a k-εmodel it was shown that the large eddy simulation learly yields better resultsregarding the pressure distribution and the separation points.Yen et al. (2001) made use of the advantages of a large eddy simulation foralulating a sour. The �ow was only modelled one with a horizontal bed and theveloities were then adapted to the hanging bottom geometry without performingan LES �ow simulation for updating the �ow. The Reynold's number based onthe pile diameter was only 3900.Although RANS have several disadvantages ompared with large eddy simu-lations, they were in fat suesfully used by Salaheldin et al. (2004) with a k-ǫmodel. The resulting veloity pro�les were found to be in good agreement withthe measured data while the shear stresses showed small deviations. Nagata et al.(2002) used a nonlinear k-ǫ model in order to alulate �ow and sour around aylinder. This and the results of Weilbeer and Roulund et al. shows that RANSmay suesfully be applied to solve three-dimensional �ow and sour problems,whih would otherwise be too time onsuming using large eddy simulations.1.2.2 Sediment transportIn a numerial model the sediment transport is usually subdivided into near-bottom transport and the transport of material in suspension. They are inludedin the general bottom evolution equation. Negleting suspended sediment trans-port on the grounds that sandy material (the only material onsidered in thepresent work) is predominantly transported at the bottom, the problem reduesto �nding an adequate desription of the bed-load. This may be ahieved usingone of the numerous equations available for this purpose. The problem may befurther simpli�ed by assuming a uniform sediment, i.e. representation of the sedi-ment partile diameters by a single mean diameter. This is a valid assumption asthe experiments presented here were arried out in laboratories under well de�nedonditions with a given uniform sediment.One of the �rst empirial expressions for the bed-load transport was obtainedby Meyer-Peter and Müller (1948) from �ume experiments with uniform grains aswell as with mixed grain sizes. The resulting formula is still used very frequently.4



1.2 Literature review
Around the same time Kalinske (1947) and Einstein (1950) developed stohastiapproahes whih take the nature of a turbulent �ow into aount when alulatingthe transport rate. Both equations still require experimental data for alibratingthe various parameters (van Rijn, 1993). The formulas of Meyer-Peter and Müllerand Einstein were used by Frijlink (1952) to develope an equation that is a �t ofthe latter formulae and thus yields similar results. Other equations that shouldbe mentioned are the equations of Bagnold (1966), Engelund and Fredsøe (1976)and van Rijn (1984). The latter were implemented in the present work and arepresented in detail in Chapter 2.2.4. Several other more transport rate equationssuitable for simulating sediment transport are also available, e.g Engelund andHansen (1967), Zanke (1982a) and Cheng (2002).Bed slopes are found to dramatially inrease when sour ours. As shown bythe measurements of Smart (1984), this has a signi�ant in�uene on the diretionand magnitude of sediment transport. This e�et may be taken into aountby modifying the transport rate originally alulated for a horizontal bed. Thetransport rate in the longitudinal diretion, i.e. the transport in the diretion ofthe shear stress, is �rst adapted and then an additional transport rate is alulatedin the transvere diretion if a slope in this diretion exists.Changes in sediment transport rates along slopes were studied by Bagnold(1966), who developed an expression for adapting the transport rate on a horizon-tal bed for sloping bed onditions. Hardisty and Whitehouse (1988) found thatthe resulting transport rate underestimates the atual transport rate obtainedfrom measurements. A similar approah was presented by van Rijn (1993), whoompared the equation of Smart (1984) with the original formula of Meyer-Peterand Müller and found an expression for a slope fator appliable to a downwardslope. Although the equation of Bagnold was developed for both an upward anddownward slope, Damgaard et al. (1997) found that upward slope transport is ad-equately desribed by taking into aount the hanging threshold value in upwarddiretion. Other approahes whih take aount of hanging sediment transportrates are given by Koh and Flokstra (1981) and Kovas and Parker (1994).In the ase that sediment transport ours in the diretion of the shear stress, aslope in the transverse diretion auses additional gravity-indued transport in thediretion of the transverse slope. This means that the resulting transport vetor is5



1 Introdution
no longer in the diretion of the shear stress but slightly inlined in the diretionof the slope. This behaviour was studied by Engelund (1974), Ikeda (1982, 1988)and Talmon et al. (1995). Ikeda developed a formula for alulating the sedimenttransport rate as a funtion of the longitudinal transport rate and the transverseslope. Talmon and Wiesemann (2006) found that the transverse transport rate isdependent on the grain size and presented a formula taking this into aount.Sediment partiles resting on a slope are subjeted to the ating shear stress aswell as the fore of gravity. The omponent of the gravity vetor in the diretion ofthe slope auses an inrease in the ritial Shields parameter when the shear stressats in the upward diretion and a derease in the opposite ase. A oe�ientfor the Shields parameter whih takes aount of the latter was �rst presented byShoklitsh (1914). Similar expressions have also been derived by Whitehouse andHardisty (1988), Lau and Engel (1999), Luque and Beek (1976), Hasbo (1995) andChiew and Parker (1994).1.2.3 Slope stabilityThe slopes that our when a sour developes are subjeted to shear stress, �ow-indued pressure and gravity. Sediment grains begin to slide when the slopesbeome too steep, thus resulting in a loss of stability. In the presented numerialmodel this is taken into aount by shifting sediment from higher to lower pointsin the omputational mesh. The threshold of sediment sliding is identi�ed byomparing the atual slope angle with the frition angle of the material. Theonly soil parameter used in this ontext is hene the frition angle, whereas slopestability is governed by additional parameters inluding the overall slope geometry.Slope stability may be determined in a number of ways whih are more orless aurate depending on the method used. Dunan (1996) has summarized theestablished methods, whih inlude the ordinary method of slies (Fellenius, 1936),the modi�ed method of Bishop (1955), Spener's method (1967) and several othermethods based on the assumption that it is appropriate to divide the soil massinto slies. Beause these methods require an approah for estimating the sidefores ating on eah slie, the entire solution proess ombined with all othersimplifying assumptions leads to unertain results. The methods mentioned are6



1.2 Literature review
nevertheless widely used in geotehnial engineering partly beause of their easeof appliation and also due to the fat that the method of Bishop, for example,beame a 'standard' for slope stability analysis (Gri�ths and Marquez, 2007).Examples demonstrating the implementation of these methods may be found inVerruijt (1995).In order to determine slope stability more aurately under sour onditions a�nite element model for the soil was implemented in the present investigations.In ontrast to the majority of numerial simulations arried out in geotehnialengineering, the analysis in the present ase is three-dimensional rather than two-dimensional. The advantages of using a numerial model rather than one of thedi�erent methods of slies are e.g that the progression of failure an be monitoredup to the point of total failure and that no assumptions are neessary onerningthe shape or loation of the failure surfae. The point of total failure, as givenby the results of the alulation, ours when the soils shear strength is no longerable to sustain the ating fore of gravity (Gri�ths and Lane, 1999). An ad-ditional advantage of a three-dimensional model is the ability to more preiselyde�ne the slope geometry. This is espeially important in the ase of a sour holewhose slope is normally haraterized by a round shape. In ontrast to a two-dimensional model, a three-dimensional approah permits the modelling of a truethree-dimensional shape rather than a two-dimensional geometry extended to thethird dimension.The fore of gravity ating on a slope auses stresses in the soil whih in turnlead to strains. Smaller strains are usually reversible and an therefore be de-sribed by the theory of linear elastiity (Verruijt, 1995; Davis and Selvadurai,1996; Zienkiewiz and Taylor, 2000). When a slope is lose to failure, however,plasti deformations our in the soil as a result of irreversible strains. The adop-tion of an elastoplasti or visoplasti approah for desribing the stress-strain re-lationship o�ers a means of modelling soil behaviour more preisely (Zienkiewizand Taylor, 2000; Davis and Selvadurai, 2002; Gri�ths and Marquez, 2007). Thisis important in the presented ases where high stress levels our and the slopeis not only lose to failure but also partially ollapses (thereby leading to slidingsediment grains). Early examples of the appliation of these tehniques are givenby Smith and Hobbs (1974) and Zienkiewiz et al. (1975). In these examples the7



1 Introdution
results were ompared with the data of Taylor (1937) and with solutions obtainedfrom the slip irle theory.A distintion between linear and nonlinear deformations is possible using theMohr-Coulomb riterion, whih is suitable for soils possessing fritional and o-hesive omponents (Smith and Gri�ths, 1998). If the stress at a point in theomputational mesh due to the ating fore of gravity lies within the range ofthe failure riterion then it is assumed that only linear deformations our. Ifthe stress lies outside of the failure riterion, on the other hand, the deformationis irreversible and yield has ourred. The stress in the yielding region is thenredistributed among the neighbouring elements in the mesh by a visoplasti al-gorithm desribed by Perzyna (1966); Zienkiewiz and Cormeau (1974). Owingto the fat that the redistribution of stresses an ause yield in regions whih wereoriginally elasti, the stress redistribution proess is arried out iteratively. Theproess ends when a stable ondition is reahed and no more plasti deformationsour.The desribed algorithm was �rst implemented in a �nite element model pub-lished by Smith and Gri�ths (1988). The use of a �nite element model for alu-lating slope stability is reported among others by Matsui and San (1992); Jeremi(2000); Sainak (2004); Gri�ths and Marquez (2007).1.2.4 Sour experimentsThe proess of souring around strutures is a widely studied e�et. Many lab-oratory experiments have been arried out in the past to investigate sour phe-nomena. Physial modelling has mainly been arried out in �umes with eithera steady urrent, waves or in rare ases a ombination of both. Previous in-vestigations have espeially foused on sour around a pile in a steady urrent,as this type of sour has led to several severe failures of river bridge piers in thepast. This phenomenon has been studied among others by Hjorth (1975); Melville(1975); Breusers et al. (1977); Ettema (1980); Zanke (1982b); Raudkivi and Et-tema (1983); Chiew and Melville (1987); Melville and Sutherland (1988); Melvilleand Chiew (1999); Oliveto and Hager (2002); Link and Zanke (2004); Roulundet al. (2005).8



1.2 Literature review
A entral question in most studies onerns the equilibrium sour depth, whihis an important fator governing strutural stability. Other topis of investigationinlude timesale, the shape of the sour hole or the in�uene of sediment ompo-sition. Early examples of the three-dimensional numerial modelling of urrent-indued sour are given by Olsen and Melaaen (1993) and Olsen and Kjellesvig(1998). Whereas the results in the former ase were alulated using a steady-state solution of the �ow, the latter ase involved the modelling of unsteady �owwith additional onsideration of varying sediment transport rates along slopes.Measurements of urrent-indued sour together with the results of a numerialsimulation have been presented by Roulund (2000). Besides introduing the on-ept of sliding sediment grains in numerial models, Roulund also took aount ofthe hanges in the ritial shear stress along slopes. Weilbeer (2001) onsideredthe same e�ets as Roulund and ompared his results with Roulund's measure-ments. A later study based on the same measurements was published by Roulundet al. in 2005.With the growth of o�shore tehnology, questions arise onerning sour ausedby tides and waves. Investigations are normally arried out with regular or irreg-ular waves based on a partiular wave spetrum (e.g. the Jonswap or the Pierson-Moskowitz spetrum). The wave-indued sour around a slender pile was investi-gated by Sumer et al. (1992, 1993, 2007). In this �ow regime a horseshoe vortexand vortex shedding is present whih leads to intense sediment transport in theproximity of the struture. It was shown by Sumer et al. (1992) and Kobayashiand Oda (1994) that the �ow regime around a ylinder may be desribed bythe Keulegan-Carpenter (KC) number. Slender piles lead to larger KC numbers(KC > 6) indiating the formation of a horseshoe vortex.In ontrast to the ase of a slender pile, the �ow regime around a large pile laksa horseshoe vortex, vortex shedding and �ow separation. Instead, di�ration ofthe wave ours (Sumer and Fredsøe, 2002) and sour is aused by wave-induedveloities at the bed. This proess was studied by Toue et al. (1992); Katsui andToue (1993) and Sumer and Fredsøe (2001a). Zhao et al. (2002) and Zhao andTeng (2004) presented the results of a simulated sour in whih the shear veloiteswere alulated by a wave model based on the Boussinesq equations and the mild-slope equations (Berkho�, 1972), respetively. The in�uene of the slope on the9



1 Introdution
sediment transport rate was not taken into aount.A wave with an underlying urrent leads to a sour hole similar to that produedby a steady urrent. This e�et was studied by Eadie and Herbih (1986); Sumerand Fredsøe (2001b); Zhao et al. (2004); Rudolph and Bos (2006). If the �ow isstrong enough and the wave propagates in the same diretion as the urrent, thehorseshoe vortex is permanently present and beomes weaker and stronger in analternating manner in aordane with the propagating waves. With inreasing�ow veloity the shape and depth of the sour hole onverges to that of a sourhole produed by a urrent without wave ation. The results of a two-dimensionalnumerial �ow model with a ombined wave model based on the mild-slope equa-tions was presented by Zhao et al. (2004).1.3 Outline of the present investigationsFollowing the foregoing literature review overing the various topis of this thesis,a brief outline of the present investigation is now given. The investigation fouseson the modelling of sediment transport and soil stability related proesses. Theinput to the sediment transport model is alulated by a �ow model desribed inChapter 2.1. A brief explanation of the governing equations, pressure treatment,and free surfae and turbulene modelling is presented. The boundary onditionsfor the ase of a superimposed wave are given in Appendix A. First order Airytheory and the stream funtion theory for higher order waves are presented.A desription of near-bed sediment transport is given in Chapter 2.2. In thishapter the governing equations, transport rate equations, transport rate adjust-ments and the hanging ritial mobility parameter on slopes are presented. Theinlusion and treatment of gravity-indued slidings of sediment grains in a nume-rial model are also explained.The mathematial theory underlying the implemented soil model is desribed inChapter 2.3. This hapter deals with the topi of linear and nonlinear deformationsalulated by a three-dimensional numerial model. Boundary onditions andsolution strategies are also taken into onsideration.Following a presentation of the di�erent parts of the numerial model, Chapter10



1.3 Outline of the present investigations
2.4 deals with the oupling and interation of these models. The results of di�erentnumerial experiments to investigate �ow and wave indued sour as well as sourhole stability analyses are subsequently presented in Chapter 3.A onlusion of the presented results together with a loser examination of theperspetives of numerial models in sour and soil modelling are given in thelosing hapter of this thesis.
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1 Introdution
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2 Physial proesses and modeloupling
2.1 Flow modelThe �ow �eld in the proximity of strutures is always omplex. Beause the �ow�eld is predominantly three-dimensional, a three-dimensional model is neessary toorretly simulate �ow behaviour. The governing equations of a three-dimensional(Reynold's averaged) Navier-Stokes equation solver are well known and may befound in numerous publiations, e.g. Ziegler (1995); White (2003); Kundu andCohen (2004). The following hapters present a summary of the equations usedand the methods by whih they are solved. Flow and sediment transport (seeChapter 2.2) model are based on the Telema modelling system developed by theLaboratoire National d'Hydraulique (LNHE) of the Eletriité de Frane (EDF).The �ow is solved on a three-dimensional mesh onsisting of wedge elements.The advetion in all simulations with �ow only is omputed using the method ofharateristis or the streamline-upwind/Petrov-Galerkin (SU/PG) method. Bothmethods are of �rst order. While the method of harateristis is more stable andless time-onsuming than the SU/PG, it is known to generate more numerial dif-fusion whih has a smoothing e�et on the solution. Other methods inlude theMURD (multidimensional upwind residual distribution) sheme, whih is used inall nonlinear wave simulations, and the N and the PSI shemes. More detailedinformation on how these shemes handle advetion may be found in Hervouet(2007). The non-hydrostati algorithm used in the present study, whih was origi-nally developed by Jankowski (1999), is also presented in Hervouet (2007) togetherwith information on the �nite element method whih is used to alulate the dif-13



2 Physial proesses and model oupling
fusion step. The handling of the free surfae, as based on Hervouet and Pham(2007), is desribed in Chapter 2.1.4.2.1.1 Governing equationsThe mathematial desription of �ows is part of the theory of ontinuum mehan-is. This onsists of the equations for the onservation of mass and onservationof momentum (Eq. 2.1 and 2.2), i.e. the so-alled Navier-Stokes equations. Thesedesribe the distribution of veloity and pressure in time and spae, and are om-prised of a system of nonlinear partial di�erential equations of seond order. Abasi assumption in the following equations is that the �uid is inompressible.

∇~u = 0 (2.1)
∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ~ν∇2~u+ ~f (2.2)In order to solve the Navier-Stokes equations by numerial methods it is �rstneessary to simplify them. This is ahieved by averaging the veloity and thepressure �elds. The resulting equations are referred to as Reynold's averagedNavier-Stokes equations (RANS). Firstly, the veloity and the pressure are splitinto an averaged part and orresponding �utuations:

ui = ui + u′i

p = p+ p′
(2.3)Inserting Eq. 2.3 into Eq. 2.2 leads to an expression (Eq. 2.4), in whih the un-known variables are averaged and where the solution is an approximation of theNavier-Stokes equations.

∂ui

∂t
+
ujui

∂xj

=
∂

∂xj

[
−pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
− u′iu

′
j

]
+ fi (2.4)The left-hand side of Eq. 2.4 represents the hange of mean momentum due tothe unsteadiness of the �ow and the onvetion term. This is balaned by the14



2.1 Flow model
stress resulting from the pressure �eld, the visous stress term, the apparent stress(
−u′iu′j

) (also known as the Reynold's stress) and the ating body fores.The Reynold's stress tensor may be approximated by means of the Boussinesqapproah (Eq. 2.5). By inserting Eq. 2.5 in Eq. 2.4, an additional equation mustbe solved in order to obtain the turbulent visosity νt. This is ahieved with theaid of a suitable turbulene model (see Chapter 2.1.5).
u′iu

′
j = −νt

(
ui

∂xj

+
uj

∂xi

− 2

3

∂uk

∂xk

δij

)
+

2

3
kδij (2.5)

2.1.2 Operator splittingThe method of operator splitting is used to split the Navier-Stokes equationsinto several parts based on the properties of the di�erential operators. Eah partmay then be treated in a single step by applying a suitable solution algorithm.All frational steps together lead to the solution of the equation on the new timelevel. The splitting of an arbitrary variable is arried out aording to the followingequation:
∂ ~f

∂t
=

~fn+1 − ~fd

∆t
+
~fd − ~fa

∆t
+
~fa − ~fn

∆t
(2.6)The �rst frational step is the advetion step, whereby the variable fn is treatedusing one of the shemes mentioned in the introdution. This results in an interimsolution fa. The subsequent di�usion step, as omputed by the �nite elementmethod, results in fd. Applying the ontinuity equation, a preliminary solutionfor the variable fn+1 may be found. In the solution of the Navier-Stokes equationsthe variable f is a veloity u,v, or w or a traer that is transported with the �ow.Considering the veloity, Eq. 2.6 takes the form

∂~u

∂t
=
~un+1 − ~ud

∆t
+
~ud − ~ua

∆t
+
~ua − ~un

∆t
(2.7)15



2 Physial proesses and model oupling
The hydrostati pressure omponent is �rst taken into aount. Splitting intofrational steps, the advetion step is desribed by:

~ua − ~un

∆t
+ ~u · ∇~u = 0 (2.8)Equation 2.8, whih is hyperboli in nature, may be solved by the method ofharateristis or the Streamwise-Upwind/Petrov-Galerkin method (SU/PG). Al-though the latter is less di�usive, it is far more time-onsuming in omputationalterms. Using the SU/PG method, advetion and di�usion are solved in a singlestep. Otherwise the di�usion step is omputed by means of Eq. 2.9.

~ud − ~ua

∆t
= ∇ · (~ν∇~u) + ~Fu (2.9)The vetor ~Fu inludes soure terms from free surfae gradients and density gra-dients as well as misellaneous soures. The solution of this equation may beobtained by the �nite element method. The result obtained from the advetionand di�usion step is an interim solution of the veloity �eld ~u. In order to getthe �nal veloity �eld the dynami pressure must be alulated by means of thePoisson pressure equation (see Chapter 2.1.3).2.1.3 Treatment of pressureThe frequently adopted assumption of a hydrostati pressure distribution is nolonger valid when dealing with waves or �ow around strutures. The aelerationof �uid partiles in suh ases results in a dynami pressure omponent whih mustalso be taken into aount. This is ahieved by splitting the overall pressure intoa hydrostati (pH) and a dynami (pD) omponent (Jankowski, 1999; Hervouet,2007):

p = pH + pD (2.10)The hydrostati omponent pH may be alulated by integrating over the waterdepth:
pH =

S∫

z

ρg dz (2.11)
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2.1 Flow model
By splitting the pressure into a hydrostati and a dynami omponent, the formof the momentum equation (Eq. 2.2) hanges as follows:

∂u

∂t
+ ~u · ∇u = −g∂S

∂x
− g

∂

∂x




S∫

z

∆ρ

ρ0
dz


− 1

ρ0

∂pD

∂x
+ ∇ · (~ν∇u) (2.12)

∂v

∂t
+ ~u · ∇v = −g∂S

∂y
− g

∂

∂y




S∫

z

∆ρ

ρ0

dz


− 1

ρ0

∂pD

∂y
+ ∇ · (~ν∇v) (2.13)

∂w

∂t
+ ~u · ∇w = − 1

ρ0

∂pD

∂z
+ ∇ · (~ν∇w) (2.14)Horizontal gradients of the free surfae as well as pressure gradients appear in theabove momentum equations (Eq. 2.12-2.14). In the vertial diretion, only thehydrodynami pressure gradient is retained. The hydrodynami pressure ompo-nent may be alulated by means of the Poisson pressure equation, whih maybe developed from the Navier-Stokes equations. The time derivative of veloitiesmay be treated using the method of operator-splitting (see Chapter 2.1.2), whihresults in:

∂u

∂t
=
un+1 − ũ

∆t
+
ũ− un

∆t
(2.15)In Eq. 2.15 ũ is an interim solution of the veloity �eld, whih is not rquired toful�l the ondition of inompressibility. Eqs. (2.12-2.14) may be onverted intotwo sets of equations, one of whih inludes the pressure gradients and the otherof whih is free of pressure terms:

ũ− un

∆t
+ ~u · ∇u = −g∂S

∂x
− g

∂

∂x




S∫

z

∆ρ

ρ0
dz


+ ∇ · (~ν∇u) (2.16)

ṽ − vn

∆t
+ ~u · ∇v = −g∂S

∂y
− g

∂

∂y




S∫

z

∆ρ

ρ0
dz


+ ∇ · (~ν∇v) (2.17)

w̃ − wn

∆t
+ ~u · ∇w = − ρ

ρ0

g + ∇ · (~ν∇w) (2.18)
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2 Physial proesses and model oupling
~un+1 − ~̃u

∆t
= − 1

ρ0

∇pD (2.19)Taking aount of the fat that the resulting veloity �eld must ful�l the inom-pressibility ondition (∇ · ~un+1 = 0), the following form of the Poisson pressureequation is obtained:
∇2pD =

ρ0

∆t
∇ · ~̃u (2.20)The divergene-free veloity �eld for the next time step is obtained from Eq. 2.19and the solution of Eq. 2.20.

2.1.4 Free SurfaeThe requirements plaed on the quality of the free surfae model inrease notie-ably when dealing with waves. Past simulations of streaming indued sour werearried out by alulating the free surfae in an inremental step based on thesolution of the two-dimensional (depth-averaged) ontinuity equation. The �nalveloity �eld was then omputed in a seond step after performing a veloity pro-jetion (see Jankowski (1999); Weilbeer (2001)). Simulations with nonlinear wavesindiated the need for very small time steps. Using this type of sheme, it wasalso found that exessive wave damping ourred. This proedure was adaptedand signi�antly improved by Hervouet and Pham (2007). All simulations dealingwith waves in the present work implement a sheme for the free surfae whihsolves the three-dimensional ontinuity equation and avoids the assumption of ahydrostati pressure distribution. Instead, the dynami pressure is alulated atthe (former) hydrostati step and is taken into aount when solving the ontinu-ity equation. As a result, the waves show no damping when propagating throughthe omputational domain.The entire alulation is performed in a semi-impliit manner, whereby theveloity is alulated by Eq. 2.21, with θ as the impliitness fator (ranging from0 to 1):
−→
U = θu

−→
U n+1 + (1 − θ)

−→
U n (2.21)Inserting Eq. 2.21 into the ontinuity equation and negleting soure terms leads18



2.1 Flow model
to

hn+1 − hn

∆t
+ ∇h

(
θu
−→u n+1 + (1 − θ)−→u n

)
= 0 (2.22)While the above equation appears to be quite trivial, the problem of solving thisequation is onneted with the frational step method. The �nal veloity �eld(and the �nal dynami pressure, whih is inluded in −→u n+1) is not known at thispoint in time. This means that an interim solution suitable for alulating thefree surfae is required. The variable −→u n+1 is alulated by averaging Ũ over thedepth.Assuming that an advetion step based on the method of harateristis oran alternative expliit method has already been performed, the veloity UC isknown. Eq. 2.23 is derived from the momentum equation and provides a meansof alulating the interim solution for the veloity Ũ . In a hydrostati solution

Ũ would be equal to Un+1. So far Eq. 2.23 has been used in this hydrostatistep. This inludes the veloity after the advetion step as well as the gradients ofthe free surfae and the turbulent di�usion. The dynami pressure is taken intoaount in a later frational step. In order to overome the modelling problemswhen simulating nonlinear waves, it is neessary to implement the full momentumequation, whih inludes the dynami pressure (Eq. 2.24).
−→̃
U −−→

U C

∆t
= −s1u

−→̃
U − g

−−→
grad(Zs) + div (νt grad(

−→
U )) (2.23)

−→̃
U −−→

U C

∆t
= −s1u

−→̃
U − g

−−→
grad(Zs) −

1

ρ

−−→
grad (pd) + div (νt grad(

−→
U )) (2.24)The projetion step for omputing the veloity is arried out as the last frationalstep and has a di�erent meaning when treating the (fomer) hydrostati step inthe above-mentioned manner. The alulated pressure then only represents aninrement whih is added to obtain the �nal veloity. The vertial veloity, whihhas not been onsidered so far, must also to be taken into aount in order tomaintain onsisteny of the algorithm. The orresponding modi�ation is givenby Eq. 2.25.

W̃ n+1 = WD − ∆t

ρ

∂ (pd)

∂z
(2.25)19



2 Physial proesses and model oupling
When onsidering the divergene of the momentum equation and splitting this intoa hydrostati step, whih inludes advetion, di�usion, the e�et of the hydrostatipressure and the soure terms, and a step for alulating the dynami pressure,the resulting equation is Eq. 2.26. Ũ is again the interim solution for the veloityfollowing the above-mentioned steps. A knowledge of the dynami pressure at thisfrational step leads to an improved solution of the ontinuity equation, espeiallywhen simulating a propagating nonlinear wave.

div

(
1

ρ

−−→
grad(pd)

)
+

1

∆t
div

(−→̃
U −−→

U n

)
= 0 (2.26)

2.1.5 Turbulene modellingThe k-ω model di�ers from the well-known and widely used k-ε model partiularlyin two partiular aspets. Firstly, it is possible to integrate through the visousboundary layer. This means that values for k and ω may be imposed diretly at theboundary. Seondly, the model produes better results when dealing with adversepressure gradients, as shown by Menter (1992) and Wilox (1993). Weilbeer(2001), for example, testet di�erent variants of the k-ω model for modelling �owaround a ylinder. The standard version was �rst testet, followed by the so-alledBSL and SSL variants. The latter variant is able to eliminate the high sensitivityof the model in the upstream region of the ylinder, as aused by the presene ofa stagnation point.The original k-ω model onsists of two transport equations. The �rst of theseis for the turbulent kineti energy k:
∂k

∂t
+ ~u∇k = ∇ ·

(
ν +

νt

σk

)
∇k + P − β∗kω (2.27)and the seond for the dissipation rate ω:

∂ω

∂t
+ ~u∇ω = ∇ ·

(
ν +

νt

σω

)
∇ω + α

ω

k
P − βω2 (2.28)20



2.1 Flow model
The appropriate prodution term P may be written as:

P = νt

(
∂ui

∂xj

+
∂uj

∂xi

)
∂ui

∂xj

(2.29)It is �nally possible to alulate the eddy visosity, whih may then be insertedinto the RANS momentum equation:
νt =

k

ω
(2.30)Five empirial onstants are required in the standard formulation of the k-ω model(Table 2.1).

α β∗ β σk σω

5
9

9
100

3
40

2 2Table 2.1: Default values of the empirial k-ω onstants
Menter (1992) developed two variants of the k-ω model in order to resolve theweaknesses of the standard version, namely the BSL (Baseline) and the SST (ShearStress Transport) variants. The BSL model ombines the positive behaviour ofthe k-ω model of Wilox in the near wall region with the k-ε, whih yields goodresults in the region outside of the boundary layer. The BSL variant of Menterwas further enhaned by Wilox, who developed the following transport equationfor ω:

∂ω

∂t
+ ~u∇ω = ∇ ·

(
ν +

νt

σω

)
∇ω + α

ω

k
P − βω2 +

σd

ω
∇k∇ω (2.31)with 21



2 Physial proesses and model oupling
σd =





0, ∇k∇ω ≤ 0

σ, ∇k∇ω ≥ 0
(2.32)In addition to the assumptions made in the BSL model, the SST variant of thek-ω model takes into aount the fat that for �ows with a boundary layer thestress (Bradshaw et al., 1967) annot exeed

τ = 0.3ρk (2.33)The turbulent visosity is de�ned by
νt =

0.3k

max(0.3ω; ΩF )
(2.34)in whih the vortiity is alulated using Eq. 2.35.

|Ω| =

∣∣∣∣
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− ∂v
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∣∣∣∣ +
∣∣∣∣
∂u

∂z
− ∂w

∂x

∣∣∣∣ +
∣∣∣∣
∂v

∂x
− ∂u

∂y

∣∣∣∣ (2.35)The blending funtion F (Eq. 2.36) is then applied in order to make use of theoriginal formulation in regions outside of the boundary layer. In Eq. 2.36 z denotesthe distane from the boundary.
F = tanh
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√
k

0.09ωz
;
500ν

z2ω

)]2

 (2.36)

2.1.6 Bottom shear stressExperiments were arried out by Nikuradse (1933) on pipes with sand along thepipe walls. The grain size s varied from s/R = 1/15 to s/R = 1/500, whereby Rdenotes the pipe radius. The e�etive grain roughness oe�ient that resultingfrom these experiments is referred to as ks. This parameter desribes the in�ueneof roughness on the �ow in the viinity of a boundary. It is assumed that the totalroughness ks is the sum of the grain roughness ks,g and a form roughness ks,f , dueto bed forms suh as ripples and dunes. In the sour experiments arried out in22



2.1 Flow model
the present work the form roughness is negleted and therefore ks,f = 0.

ks = ks,g + ks,f (2.37)Based on the mean partile size, the grain roughness may be approximated asfollows:
ks,g = 3 dm (2.38)In the ase of rough hannels the visous layer at the boundary is followed by aregion with a logarithmi veloity distribution. The logarithmi law desribingthis distribution may be expressed as

u

u∗
=

1

κ
ln

(
y0

ks

)
+B (2.39)Here, u/u∗ is the ratio of the �ow veloity to the shear veloity and κ is the vonKarman onstant, whih is equal to 0.41. The distane from the boundary isdenoted by y0 and ks is the boundary roughness mentioned above. The onstant

B is a funtion of the non-dimensional roughness parameter k+
s = u∗ks/ν. For aturbulent �ow in a ompletely rough regime Nikuradse found that B = 8.5. Thisredues Eq. 2.39 to

u

u∗
=

1

κ
ln

(
30 y0

ks

) (2.40)In order to alulate the sediment transport rate, the shear stress at the bottomis also required. Using the shear veloity from Eq. 2.40 and inserting this into Eq.2.41 leads to the shear stress that is used in the sediment transport model.
u∗ =

√
τB
ρ

(2.41)
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2 Physial proesses and model oupling
2.2 Sediment transport and bottom evolutionWhen a �uid �ows over a movable bed onsisting of sediment partiles, a shearfore develops and ats on the single grains. The shear fores are aused by theoarseness of the bed, whih gives rise to pressure �utuations, and also due tothe fat that �uids tend to adhere to solid walls (Zanke, 1982a). In the ase thatthe shear fores are large enough to set the grains in motion, sediment transporttakes plae. Lighter sediments go into suspension and are arried away by the�ow. Heavier sediments are transported as bed-load near the bottom surfaein the diretion of the shear stress. As will be demonstrated in Chapter 2.2.5,this behaviour is also in�uened by the bottom slope. In the present model thesuspended sediment transport is negleted, as only oarser material is used in thenumerial experiments whih tends to be transported as bed-load.2.2.1 Material propertiesSediments in a natural environment onsist of partiles or grains whih primarilyresult from the disintegration of roks. Grain sizes range from large fragmentsto small, olloidal partiles. The shape of grains is formed by the natural envi-ronment, whih leads to rounded as well as angular grains. The density of grainsvaries aording to the omposition of the onstituent materials. The predominantmaterials present in sediment grains are quartz and lay. While quartz is non-ohesive, lay is generally ohesive due to the fat that it onsists of �at plates witha diameter of less than about 0.06mm. This means that lay tends to �oulate.The size of sandy partiles, as used in the present experiments, lies in the range of0.06mm to 2mm. The density of the above-mentioned materials is approximately
ρs = 2650 kg/m3. The spei� gravity is given by the ratio of the �uid density tothe sediment density: s = ρs/ρ. An additional property relevant to the presentstudy is the angle of repose, whih is a limiting parameter with regard to slopeangles.The sediment properties onsidered here are:� density� shape24



2.2 Sediment transport and bottom evolution
� size� angle of reposeNegleting suspended sediment transport in the present investigation (see Chapter2.2.2), a knowledge of the fall veloity is not required. This also applies to theporosity, whih is only required when onsidering the paking of sediments andonsolidation history. A single dimensionless parameter D∗ (Eq. 2.43) is usedhere to desribe sediment partiles and their properties. This parameter re�etsthe in�uene of the gravity g, the partile density ρ and the �uid visosity ν.Sediments in a natural environment onsist of a range of partile sizes. Here d50 isused, whih is the median partile diameter of the bed material, i.e. the partilesize below whih 50% by weight is �ner. Another haraterisation often used isthe mean partile size, whih is de�ned as

dm = Σ (pi di)/100 (2.42)whereby pi is the perentage by weight of eah grain.
D∗ =

(
(ρS − ρ)

ρ

g

ν2

) 1

3

d50 (2.43)
2.2.2 Bottom evolutionThe result of a �ow simulation provides a knowledge of the magnitude and thediretion of the shear stress ating on the sediment partiles (~τB). This informationmay be used to determine the transport apaity (see Chapter 2.2.4) and thediretion of the sediment �ux ~qs. The sediment �ux and the shear stress arerelated by Eq. 2.44. This vetor does not inlude the fore of gravity atingon the sediment partiles. The in�uene of slopes and therefore gravity will bedisussed in Chapter 2.2.5.1. The sediment �ux alone o�ers no information onhow the bed will hange in height. Inserting the result of Eq. 2.44 in the bottomevolution equation (Eq. 2.45) leads to the hange of bed height with time, i.e. the25
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bottom evolution.

~qs = qs
~τB
‖~τB‖

(2.44)
∂zB

∂t
= − div ~qs = −

(
∂qsx
∂x

+
∂qsy
∂y

) (2.45)2.2.3 Ineption of sediment motionSediment transport takes plae when the ating shear stress exeeds a ritialvalue. A large number of experimental studies dealing with this topi have beenarried out by various investigators, e.g. Shields (1936); Graf (1971); Raudkivi(1976); Yalin and da Silva (2001). In most studies the ritial value for inipientmotion of sediment is related to the ritial bed shear stress τb,cr. In a non-dimensional expression this is referred to as the ritial Shields parameter θcr(Eq. 2.47), as shown in Fig. 2.1. Although this is still the most widely adoptedriterion for de�ning the ineption of sediment motion, a number of inonsisteniesand misoneptions (Bu�ngton, 1999) and disrepanies exist in the experiments(Shvidhenko and Pender, 2000).The ritial Shields parameter may be alulated by parametrizing the Shieldsurve (Eq. 2.46), as arried out by van Rijn (1993). the shear stress and mobilityparameters are related by Eq. 2.47. While Shields relates the ritial shear stress toa Reynold's number whih inludes the atual shear stress ating on the partiles,van Rijn uses the dimensionless partile diameter D∗, whih inludes the materialdensity in order to alulate the ritial value. Both methods lead to similarresults.
θcr = 0.24 D−1

∗ for 1 < D∗ ≤ 4

θcr = 0.14 D−0.64
∗ for 4 < D∗ ≤ 10

θcr = 0.04 D−0.1
∗ for 10 < D∗ ≤ 20

θcr = 0.013 D0.29
∗ for 20 < D∗ ≤ 150

θcr = 0.055 for D∗ > 150

(2.46)
θ =

τb
(ρS − ρ)gd

≥ θcr (2.47)
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2.2 Sediment transport and bottom evolution

Figure 2.1: Ineption of sediment motion (Shields, 1936)
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2 Physial proesses and model oupling
2.2.4 Transport rate2.2.4.1 Van RijnEq. 2.49 developed by van Rijn (1984) is based on laboratory experiments. Thegrain diameters onsidered in the experiments were in the range of 200µm <

d50 < 2000µm. The water depth was greater than 0.1m in all experiments andthe Froude number was less than 0.9.Van Rijn assumes in his approah that partile movement is dominated byjumps and saltation. The bed height may then be approximated by the followingequation:
δb
d

= 0.3 D0.7
∗ T 0.5 with T =

τb − τb,cr
τb,cr

(2.48)
qs = α

√
ρs − ρ

ρ
gd3

50 D
−0.3
∗ T β (2.49)An equation for the partile veloity was also developed from experiments andhas the following form:

ub

[(s− 1) g d]0.5 = 1.5 T 0.6 with s =
ρS

ρ
(2.50)Using the equation for the sediment onentration

cb
co

= 0.18
T

D∗
(2.51)and inserting it into qs = δbubcb results in Eq. 2.49, whih may be used todetermine the transport apaity under the given onditions.For a value of T > 3the equation was found to overestimate the transport apaity and was henemodi�ed in order to �t the results of the laboratory experiments:

qs = 0.053 (s− 1)0.5 g0.5 d1.5
50 D−0.3

∗ T 2.1

qs = 0.1 (s− 1)0.5 g0.5 d1.5
50 D−0.3

∗ T 1.5 for T ≥ 3

(2.52)
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2.2 Sediment transport and bottom evolution
2.2.4.2 Meyer-Peter and MüllerAn alternative approah for alulating the bed-load transport apaity is bymeans of Eq. 2.53, as developed by Meyer-Peter and Müller (1948, 1949). Nu-merous experiments were arried out in a �ume with a length of 50m and a ross-setion of 2 × 2m2. The water depth was 0.1 to 1.2m. The resulting equationis only valid for partile sizes greater than 0.4mm and less than 29mm, whihapproximately orresponds to the diameter range of oarse sand. This equationis therefore more appliable in a river than in a oastal environment. In thepresent work the equation was used e.g. for alulating the transport apaity ina simulated laboratory experiment with an arti�ial sediment (see Chapter 3.1.1).

qs = 8

√
ρs − ρ

ρ
gd3

m(µθ − θcr)3

qs = 8
1

ρ1/2(ρs − ρ)g
(µτb − τcr)

(2.53)
In Eq. 2.53, θ is again the mobility parameter (Eq. 2.47) and µ is the bed-formfator, whih may be alulated using the overall Chézy oe�ient (Eq. 2.55) andthe grain-related Chézy oe�ient (Eq. 2.56).

µ =
C

C ′
(2.54)

C = 18 ln(12h/ks) (2.55)
C ′ = 18 ln(12h/d90) with d90 = 3dm (2.56)Meyer-Peter and Müller used the mean diameter dm in their work. This is about1.1 to 1.3 times greater than the d50 parameter for almost uniform material. Byway of an example Van Rijn (1993) demonstrated that the in�uene of the parti-le diameter on the resulting sediment transport apaity is only very small andtherefore the median partile diameter d50 may also be used. 29
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2.2.4.3 Engelund and FredsøeThe transport rate equation developed by Engelund and Fredsøe (1976) desribesthe transport rate as a produt of the partile volume, the partile veloity ub andthe probability of ourrene of moving partiles per partile area. This equationreads as follows:

qs =
π

6
d3 p

d2
ub (2.57)The required partile veloity may be alulated using a semi-empirial equation(Eq. 2.58), where u∗ is the shear veloity and α is a parameter in the range of 6to 10. In the experiments presented at a later stage a value of α = 10 is used.

~ub = α~u∗

(
1 − 0.7

√
θcr

θ

) (2.58)The probability of ourrene of moving partiles is alulated using Eq. 2.59,where µd is the dynami frition oe�ient. For the materials onsidered in thepresent study a value µd = 0.51 was adopted.
p =

[
1 +

( π
6
µd

θ − θcr

)4
]−1

4 (2.59)2.2.4.4 ChengMost transport rate equations are of an empirial nature and were developedwith the aid of laboratory measurements. As these measuerements were madeunder di�erent onditions, e.g. for low, moderate or high shear stress, the derivedequations are only valid for the partiular onditions orresponding to eah set ofmeasurements. The sediment transport formula of Cheng (2002) was derived to�t measurements and transport formulae for low, moderate and high shear stressonditions. The onept of ritial shear stress was not taken into aount owingto its limitations when dealing with low shear stress and hene weak sedimenttransport. Experiments suh as those of Paintal (1971) show that there is noshear stress below whih absolutely no grains move. Although the transport rate30



2.2 Sediment transport and bottom evolution
beomes very small for very low shear stress values, it never equals zero.The non-dimensional transport rate equation of Cheng is derived from the re-lationship Φ ∼ θn and takes the form

Φ = 13 θ1.5 exp

(
−0.05

θ1.5

) (2.60)whereby the transport rate qs may be written as
qs = Φ d

√
(s− 1)gd (2.61)Eq. 2.60 �ts the measurements of Meyer-Peter and Müller (1948), Einstein(1950), Bagnold (1973) and Yalin (1977) well for moderate and high shear stress.A omparison of Eq. 2.60 with the formulae of Paintal (1971) and Einstein (1942)shows that it is also able to orretly reprodue transport rates under low shearstress onditions.2.2.5 In�uene of bottom slopeThe bottom slope is the inlination of the bottom surfae measured from a hori-zontal plane. The bottom slope in�uenes both the diretion and the amount ofthe transported sediment due to the gravity fore omponents ating on the sedi-ment partiles. In the ase of a developing sour simulated by a numerial model,the slope angle grows quikly and unhindered owing to the absene of a limitingparameter for erosion or the slope gradients in the bottom evolution or transportrate equations. Almost all transport rate equations were developed for a horizon-tal bed. In an environment with bottom slopes, however, these equations do notyield a meaningful solution. In addition to the �owing �uid, whih gives rise toshear stress at the bottom surfae, a slope-indued downhill fore is present whihmust also be taken into aount. This auses a hange in the sediment transportrate and shifts the point of ineption of the sediment motion.An additional slope-indued e�et is the sliding of sediment grains when thebottom angle attains the frition angle and a failure of bottom stability ours.Approahes taken from the literature whih are used in the numerial model willbe disussed in the following hapters. 31
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2.2.5.1 Transport rateAn inrease in the transport rate on a downward slope is taken into aount byapplying di�erent equations for a longitudinal and a transverse slope. Eq. 2.62 asdeveloped by van Rijn (1993) based on the equation of Smart (1984), predits theampli�ation fator kL for the transport rate on a downward slope. In Eq. 2.62 Cis the Chézy oe�ient and βL is the slope angle in the longitudinal diretion.Although it seems reasonable to assume that the transport rate in the uphilldiretion should be dereased, Damgaard et al. (1997) found that no modi�ationis neessary in this ase. It is only neessary to take into aount the modi�ationof the Shields parameter (see Chapter 2.2.5.2) for an inreasing elevation whenalulating the bed-load.

kL =
1

2
g−0.5

(
d90

d30

)0.2

C tan0.6 βL

(
τb

(τb − τb,cr)

)0.5 (2.62)The bed-load transport in the transverse diretion was studied by Engelund(1974), Ikeda (1988) and Sekine and Parker (1992). The approah of Ikeda washosen in the present study and implemented in the sediment transport model.The transport rate in the transverse diretion is desribed by:
qs,T = 1.5

(τcr,T
τ

)0.5

tanβT qS (2.63)Fig. 2.3 shows the e�ets of Eq. 2.63. Beause the slope is perpendiular to theating shear veloity, the diretion of sediment transport is in�uened by the slope.The resulting sediment transport rate vetor is then no longer in the diretion ofthe shear veloity, but slightly inlined in the diretion of the slope. The otherextreme situation is when the shear veloity is in the same diretion as the slope.Figure 2.4 shows how the sediment transport rate is inreased by Eq. 2.62 in thelatter ase without any alteration in its diretion.2.2.5.2 Critial Shields parameterSediment partiles lying on a downhill slope are a�eted by a downhill fore whihinreases the partile mobility in the diretion of the slope and vie versa in the32



2.2 Sediment transport and bottom evolution

Figure 2.3: In�uene of a transverse slope on qsuphill diretion. Experimental data indiate that not only the transport rate(Smart, 1984) but also the threshold onditions hange on a sloping bed. It isneessary to modify the ritial mobility parameter θc in order to take aountof this e�et. The latter is dereased when the shear veloity points in the samediretion of the slope and inreased when it points upwards.The Shields parameter for a horizontal bed is thus adjusted by Eq. 2.64 andEq. 2.65 for longitudinal and transverse slopes based on the diretion of the bedshear veloity. Eq. 2.64 whih was �rst presented by Shoklitsh (1914), wasderived from the equilibrium of fores ating on a single partile on a slopingbed. A omparison with experimental data was found to show good agreement(Whitehouse and Hardisty, 1988). An adjustment of the ritial Shields parameterfor transverse slopes (Eq. 2.65) was also derived by Lane (1955) and Ikeda (1982),and �rst presented by Leiner (1912). In Eq. 2.64 and Eq. 2.65, φ is the angle ofrepose and β is the atual slope angle. Fig. 2.5 shows a plot of both equations.Although these equations are only de�ned for small slope angles, the results forsteeper slopes are still found to be reasonable. Both approahes onverge to zero33
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Figure 2.4: In�uene of a longitudinal slope on qs
when the slope angle onverges to the frition angle. As a onsequene, bothvalues must to be limited in order to avoid meaningless results.

αL =
sin(φ− βL)

sinφ
(2.64)

αT = cosβT

[
1 − tan2 βT/ tan2 φ

]0.5 (2.65)Similar investigations arried out by Chiew and Parker (1994), Hasbo (1995),Whitehouse and Hardisty (1988), Lau and Engel (1999) and Luque and Beek(1976) resulted in similar expressions for the orretion of ritial Shields para-meter. The approahes of Shoklitsh and Leiner were used in the present studyowing to the reasonable results obtained.34



2.2 Sediment transport and bottom evolution
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Figure 2.5: Corretion fator of Shoklisth and Leiner2.2.6 Sliding sedimentsDeveloping sour gives rise to steep slopes along all sides of a sour hole. Theslope angle inreases and onverges to the frition angle (Table 2.2). This even-tually leads to failure of slope stability and to sliding sediments along the slopein the diretion of the downward gradient. This proess, whih has been studiedin laboratory experiments (Roulund et al., 2005), must to be taken into aountin order to obtain reasonable results from the numerial model. The resultingbottom geometry is therefore limited by this stability riterion. The sour proessis only de�ned for sandy material without any ohesive sediments. Fig. 2.6 showsa de�nition sketh of the sediment grains sliding down a slope whith a slope angle
β greater than the frition angle.This proess may be modelled in a number of di�erent ways. Roulund et al.(2005) developed an algorithm in whih a sediment transport is initiated from thehighest points in the diretion of the downward gradient. The unstable onditionof the bottom is transformed into a stable ondition by an iterative proedure inwhih the �nal geometry is attained in inremental steps.An alternative method for simulating sediment slide is the iterative shifting of35
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Figure 2.6: Slope with a slope angle β showing the sediment slide diretionsediment without the need to alulate a transport rate and solve the bottomevolution equation. Sediment shifting implies that the material at a higher meshpoint is transferred to a nearby neighbouring point lower than the sediment soure,and where the slope angle between those two points exeeds a ertain limit. Thislimit is naturally the frition angle plus a small threshold value. The algorithm isterminated when the frition angle is attained. This guarantees that the resultingbottom geometry satis�es one soil parameter and that no points of disontinuityexist. As threshold value of two degrees proposed by Roulund et al. (2005) wasalso used in the present model.
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2.2 Sediment transport and bottom evolution

Frition angle (φ)

d50 [m] Rounded partiles Angular partiles
≤ 0.001 30° 35°0.005 32° 37°0.01 35° 40°0.05 37° 42°
≥ 0.1 40° 45°Table 2.2: Range of the frition angle (van Rijn, 1993)
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2 Physial proesses and model oupling
2.3 Soil modelWhen a slope develops, the slope gradient inreases ontinuously until failureours. The sliding of sediment grains then takes plae in order to re-establisha stable slope ondition. Flow and frature are the two main failure modes. Asandy soil tends to �ow when the stress exeeds a ritial value, whereas fratureis of more interest when onsidering roks and onrete. The modelling proedurethus involves a alulation of the deformations, a determination of the point offailure and then an estimation of how the material responds under �ow onditions.The �rst part of this proedure is dealt with by an elasti model that approxi-mates the material behaviour as beeing linear elasti (Chapter 2.3.2.1). Seondly,a failure riterion is introdued whih is suitable for determining the transitionpoint between linear elastiity and plasti deformations.Although soil is a mixture of partiles of di�erent minerals in whih the porespaes are �lled by either a �uid, gas or both, it is treated and idealised as aontinuum. This implies that it may be subdivided into a number of elementswhereby eah element represents a part of the ontinuum. Although the parti-ulate nature of soil is negleted in most engineering appliations, several theoriesexist whih take this into aount (Davis and Selvadurai, 2002).
2.3.1 Stress and strainFores ating on a body ause a deformations whih may be expressed with theaid of a displaement vetor (Eq. 2.66). This vetor points from the origin to theloation where a point has moved due to the deformation proess. By assigninga vetor to every point of the body a vetor �eld overing the omplete volumeis obtained. Taking spatial derivatives of the omponents of the displamentvetor gives the displaement gradient matrix ∇u (Eq. 2.67). The omponents aredenoted by ε for the extensional strains and γ for the shear strains, respetively.The stresses and orresponding strains resulting from the ating fores are re-lated by the onstitutive equations. These equations, whih are material-dependent,38
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are desribed in Chapter 2.3.2.
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2 Physial proesses and model oupling
Considering stati equilibrium, body and ontat fores within the body andagitating fores ating on the body surfae summate to zero. The body fore inthe present ontext is simply the gravitational fore. The relationship betweenagitating fores and stresses within the body is expressed by

∂σx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
+Fx = 0

∂τyx

∂x
+
∂σy

∂y
+
∂τyz

∂z
+Fy = 0

∂τzx

∂x
+
∂τzy

∂y
+
∂σz

∂z
+Fz = 0AT

σ +F (2.68)
whereby σ and τ denote the normal stress and the shear stress, respetively.Agitating fores are denoted by F . Fig. 2.7 shows the orresponding fores atingon a single element.These three equations must be satis�ed at all points in the body. The right-hand side of these equations is zero due to the assumption of stati equilibrium.For the solution of the above-mentioned equations it is neessary to determinethe three displaements, the six strain omponents and the six independent stressomponents. The strains from the orresponding displaements are omputed bythe �nite element method. The equilibrium ondition alone yields only three equa-tions, whereas a total of six equations must be solved for the stress omponents.The missing equations are provided by the onstitutive equations.In a �nite element model the body is divided into single elements forming amesh. The stresses and strains are alulated at spatial points within these ele-ments by using Eqs. 2.66-2.68. A desription of the �nite elements used for thespatial disretization and the method of solution of the above-mentioned equationsare presented in the following Chapters.2.3.1.1 The wedge elementThe sediment transport and �ow models are based on a mesh omprised of triangu-lar elements. A mesh of wedge elements (Fig. 2.8) is used for the three-dimensional40
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(2.69)Forming the derivatives of the shape funtions leads to:
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2.3.1.2 Numerial integrationThe numerial integration of the shape funtions (Eq. 2.69) or their derivatives(Eq. 2.70) is performed using the Gauss quadrature method. The desired funtionsfor an element are evaluated at the Gauss points. Summing up the single valuesand multiplying them by their weightings yields the integral over the element area.All quadrature rules take the form:

∫ 1

−1

f(r)dr =

NG,r∑

i=1

Wi(ri)f(ri) (2.71)Here, Wi is the weighting funtion at the oordinate position ri within the ele-ment. Extending the quadrature method to three dimensions leads to the followingexpression (Eq. 2.72):
∫ 1

−1

∫ 1

−1

∫ 1

−1

f(r, s, t) dr ds dt =

NG,r∑

i=1

NG,s∑

j=1

NG,t∑

k=1

Wi(ri)Wj(sj)Wk(tk)f(ri, sj , tk)(2.72)For a wedge element the loation of the Gauss points and the orrespondingweightings are as followed (Ratke et al., 1996):
GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8r 1/3 3/5 1/5 1/5 1/3 3/5 1/5 1/5s 1/3 1/5 3/5 1/5 1/3 1/5 3/5 1/5t √

1/3
√

1/3
√

1/3
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3 −
√

1/3

WiWj -9/32 25/96 25/96 25/96 -9/32 25/96 25/96 25/96
Wk 1 1 1 1 1 1 1 1Table 2.3: Gauss point loations and weightings
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Figure 2.9: Rheologial models2.3.2 Constitutive equationsWhile the kinemati equations relate strain to displaement gradients, and theequilibrium equations relate stress to the applied fores at the boundary, theonstitutive equations relate the applied stresses to strains. These equations takeinto aount the onsidered material and it's physial parameters. The onstantsin these equations express the behaviour of the material under the ation of stress.In the following hapter the equations for an isotropi, elasti material arepresented. As anisotropi material is not onsidered in the present study, theequations for this ase are omitted.2.3.2.1 Linear elastiityElastiity desribes the behaviour of a material that undergoes a deformation un-der the ation of stress and returns to its original form one the stress is removed.43
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Figure 2.10: Linear elasti material behaviour
If strain and stress are related by a linear funtion, this is referred to as linearelastiity and may be desribed by Hooke's law (Eq. 2.73). Here, σ is the stressating on the material, ε is the strain and E is the elastiity modulus (also knownas Young's modulus). The rheologial model (Fig. 2.9) is a spring with a desig-nated sti�ness E. The shear may be alulated by means of Eq. 2.74, where G isthe shear modulus and γ is the twist angle.

σ = E ε (2.73)
τ = G γ (2.74)Another important material parameter is Poisson's ratio, whih desribes theontration in the lateral diretion when a material is extended. In Eq. 2.75, νPis Poisson's ratio, whih is the ratio of the longitudinal strain εl to the transversestrain εt.
νP =

εl

εt
(2.75)For an isotropi elasti material (i.e., an elasti material for whih the propertiesare the same in all diretions) there are only two independent material onstants.44
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The relationship between these three moduli are given by the equation

G =
E

2(1 + νP )
(2.76)In a three-dimensional, retangular Cartesian oordinate system the six equa-tions of Hooke's law take the form (Timoshenko and Goodier, 1951)




σx

σy

σz

τxy

τyz

τxz




= E
(1+νP )(1−2νP )




1 νP νP 0 0 0

νP 1 νP 0 0 0

νP νP 1 0 0 0

0 0 0 1−νP

2
0 0

0 0 0 0 1−νP

2
0

0 0 0 0 0 1−νP

2







ǫx

ǫy

ǫz

γxy

γyz

γxz




σ = D ε (2.77)2.3.2.2 Material nonlinearityThe linear elastiity desribed in the foregoing hapter is only valid for a veryidealised ase in whih the agitating fores ating on a body lie in a partiularrange. The behaviour of the material outside this range is no longer linear andfully reversible. Instead, the relationship between stress and strain is a ompli-ated funtion ontaining oe�ients in the equations that depend on the solution.As the material begins to �ow, parts of the deformations are permanent. Fig. 2.11shows the behaviour of a perfetly plasti material. The �ow is onstant whenreahing the orresponding ritial stress state is attained. No hardening or soften-ing of the material ours. This behaviour is not taken into aount in the presentstudy beause the onsidered (sandy) material does not exhibit these e�ets.Considering the proess of nonlinear material behaviour in a �nite element ana-lysis leads to a more omplex analytial problem than in the ase of materiallinearity. Two main solution proedures exist for this problem. The �rst methodimplements a one-only onstruted sti�ness matrix whih is idential to the ma-trix for the linear elasti ase. Nonlinearity is taken into aount by iteratively45
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Figure 2.11: Elasti - prefetly plasti material behaviourinreasing the (external) load vetor, whereby eah single iteration involves anelasti analysis.
ε = εe + εp (2.78)The total strain of a yielding material (Eq. 2.78) is the sum of reoverable strains

εe, whih may be desribed by the theory of linear eleastiity, and the irreoverablestrains εp, whih are present after unloading. The latter must be alulated by amethod suitable for desribing plasti material behaviour (see Chapter 2.3.2.6).2.3.2.3 InvariantsThe stress tensor expressed in Cartesian oordinates is de�ned as




σx τxy τxz

τyx σy τyz

τzx τzy σz





(2.79)This is equivalent to the prinipal stress tensor (Eq. 2.80), whih de�nes the max-imum and minimum normal stresses in a plane. These are always perpendiular46
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to eah other and oriented in diretions in whih the shear stresses are zero.

{σ1 σ2 σ3} (2.80)Although the prinipal stresses give the magnitude of the stresses ating at a point,a disadvantage of this tensor is the need for information on how the oordinatesystem is oriented in physial spae. The use of invariants is therefore often morepratial than the use of prinipal stresses. Invariants are salar funtions oftensors that have the same values regardless of whih oordinate system they arereferened to. Using the notation of Smith and Gri�ths (1998), the invariants aregiven by
s = 1√

3
(σx + σy + σz)

t = 1√
3
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 +

6τ 2
xy + 6τ 2

yz + 6τ 2
xz]

1

2

θ = 1
3
arcsin

(
−3

√
6J3

t3

)

(2.81)
where s denotes the distane from the origin of the oordinate system to theplane (Fig. 2.12) in whih the onsidered point is loated, t is the perpendiulardistane of the point from the spae diagonal and θ is the Lode angle whih givesthe angular position of the point in the plane. The required J3 and si are de�nedby

J3 = sxsysz − sxτ
2
yz − syτ

2
zx − szτxy

2 + 2τxyτyzτzx (2.82)and
sx = (2σx − σy − σz) /3, etc. (2.83)As the given invariants (Eq. 2.81) have no physial meaning, a more expressiveformulation is given by Eq. 2.84. Here, σm is the mean stress and σ̄ is the stressontained in the deviatori tensor. The invariants in this form are adopted in thefollowing hapters.

σm = s√
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σ̄ = t
√

3
2

(2.84)
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Figure 2.12: Mohr-Coulomb failure riterionThe prinipal stresses and invariants are related to eah other by the followingequations:
σ1 = σm + 2
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3
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(2.85)
2.3.2.4 Failure riterionIn order to desribe the plasti behaviour of soil a riterion is required to distin-guish between the material in a state of elasti deformation or plasti deformations.Several riteria have been developed whih are suitable for di�erent kinds of mate-rial. They may be distinguished from eah other by the form of the yield surfae inthe priniple stress spae. Fig. 2.12 shows the riterion of Mohr-Coulomb, whihprovides an adequate desription of the plasti behaviour of sandy soil. As thelatter depends on the �rst and third priniple stresses, it takes the form of an48
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irregular hexagonal one. Using the frition law

τ = c− σ tanφ (2.86)the Mohr-Coulomb failure riterion may be written as
σ1 + σ3

2
sin φ− σ1 − σ3

2
− c cos φ (2.87)where c is the ohesion fator, φ is the frition angle and σ1 > σ2 > σ3. Substitu-ting Eqs. 2.85 into Eq. 2.87 leads to the following expression for the Mohr-Coulombriterion:

F = σm sin φ+ σ̄

(
cos θ√

3
− sin θ sin φ

3

)
− c cosφ (2.88)The form of the hexagonal one is de�ned by kt and kc (Fig. 2.12) (Findeiÿ, 2001).The latter are dependent on the ohesion fator and the frition angle, and arede�ned by

kt =
2
√

6 c cosφ

3 + sin φ

kc =
2
√

6 c cosφ

3 − sinφ

(2.89)
When the stress reahes the yield surfae, the assoiated plasti �ow leads tophysially unrealisti volumetri expansion or dilation (Smith and Gri�ths, 1998).In this ase, the non-assoiated �ow rule is applied. The plasti strain is thendesribed by a plasti potential funtion Q, whih is geometrially idential to theyield funtion F . In this ase, however, the dilation angle ψ is used instead ofthe frition angle φ. Di�ulties arise in the determination of the derivative of Eq.2.96. Beause the form of the Mohr-Coulomb yield surfae is non-ontinuous, thederivative in Eq. 2.96 beomes indeterminate. This ours when the Lode angle

θ = ±30◦. In order to ensure numerial stability the hexagonal surfae is replaedby a onial surfae. When the following ondition holds
| sin θ| > 0.49 (2.90)49
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the value for the Lode angle in Eq. 2.88 is replaed by θ = 30◦ or θ = −30◦,depending on the sign of θ.2.3.2.5 Body-loadsUsing algorithms with a repeated elasti solution, suh as the onstant sti�nessmethod, it is neessary to redistribute the loads ating on the system in orderto ahieve onvergene (Smith and Gri�ths, 1998). The small load inrementsinvolved in suh algorithms lead to a system of equations whose solution yieldssmall inrements of displaement (Eq. 2.91). Here, K is the sti�ness matrix and pare the internal and external loads. The index i denotes the number of iterations.

Kδi = pi (2.91)In order to obtain the total strain inrements of the system the displaementsof eah element u are extrated from the system displaement vetor δ and thenalulated via the strain-displaement relationship
∆εi = Bui (2.92)In regions where the stress is beyond the yield surfae the total strains inlude anelasti and a viso-plasti omponent, as expressed by

∆εi = (∆εe + ∆εvp) (2.93)Considering only the elasti strain inrements ∆εe, the orresponding stresses aneasily be alulated using the stress-strain relationship
∆σi = De (∆εe) (2.94)The stress inrements from Eq. 2.94 are then added to the already existing inre-ments from the previous load step, and the atual stress ating on the system maybe used in the failure riterion equations. In ase of stress redistribution the loadvetor p (Eq. 2.91) is altered. The load vetor itself is omprisd of two di�erenttypes of load (Eq. 2.95), namely the atual load inrement pa and the body-load50
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inrement pb, whih hange with eah iteration.

pi = pa + pi
b (2.95)Commonly used methods for alulating the body-loads are the initial stressmethod and the method of viso-plastiity (also referred to as the initial strainmethod). The latter method, whih was adopted in the present study, is desribedin the following hapter.2.3.2.6 Viso-plastiityTaking a visous or a viso-plasti material behaviour into aount leads to a time-dependent relationship between strains and displaements. This may be illustratedby means of a damper with a relaxation time in the rhelogial model (Fig. 2.9). Afundamental desription of the theory of viso-plastiity may be found in Perzyna(1966), Perzyna (1971) or Zienkiewiz and Cormeau (1974). The approah ofZienkiewiz and Cormeau (1974) was used by Smith and Gri�ths (1998) to for-mulate a numerial algorithm whih is implemented in the present study. Whensimulating and analysing soil strains and displaements under saturated ondi-tions, a pronouned time-dependeny exists, whih is mainly due to transportproesses suh as the �ow of pore �uid. The ases onsidered in the foregoing areall under saturated onditions with a �ow ating on the upper surfae of the bed.It is therefore neessary to take the time-dependeny of the proess into aount.This is realised in the onstitutive equations in the form of viso-plastiity. As analternative, this proess ould be modelled as a two-phase proess involving thesoil and the pore �uid �ow.In the method of Zienkiewiz and Cormeau (1974) the material is allowed toattain a stress state beyond the failure riterion (Fig. 2.12). In ontrast to theelasto-plastiity, whereby the stress is immediately redistributed within the om-putational mesh to fore the stresses to reah the failure surfae, stresses beyondthe failure surfae are permitted for a small period of time. These are the viso-plasti strains that are related to the amount by whih the yield has been violated51



2 Physial proesses and model oupling
by

ε̇V P = F
∂Q

∂σ
(2.96)where ε̇V P is the viso-plasti strain, σ is the stress and Q = Q(σ, q) is the plastipotential funtion that desribes the material behaviour in the ase of plastiity(e.g. softening, hardening or ideal plastiity). The time-dependeny is taken intoaount by summating the inrements of the viso-plasti strain rate (Eq. 2.96)at eah time step. This may be expressed by

(
δεV P

)i
= ∆t

(
ε̇V P

)i (2.97)and (
∆εV P

)i
=
(
∆εV P

)i−1
+
(
δεV P

)i (2.98)The time step ∆t as derived by Cormeau (1975), is a pseudo time step whihvaries for di�erent soil materials in order to ahieve numerial stability. The timestep for �von Mises� materials is
∆t =

4 (1 + νP )

3E
(2.99)and for Mohr-Coulomb materials

∆t =
4 (1 + νP )(1 − 2νP )

E(1 − 2νP + sin2 φ)
(2.100)In order to alulate the viso-plasti strain rates the derivatives of the plastipotential funtion with respet to the stresses are required. These are expressedby
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(2.101)with the invariant J2 = 1/2 t2. In a numerial model the viso-plasti strain rate(Eq. 2.96) is alulated aording to

ε̇V P = F
(
DQ1 M1 +DQ2 M2 +DQ3 M3

)
σ (2.102)Here, M1σ, M2σ and M3σ are vetors that represent ∂σm/∂σ, ∂J2/∂σ and
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∂J3/∂σ, while DQ1,DQ2 and DQ3 are salars equal to ∂Q/∂σm, ∂Q/∂J2 and
∂Q/∂J3, respetively (Smith and Gri�ths, 1998; Zienkiewiz and Taylor, 2000).The body-loads pi

b (see Chapter 2.3.2.5) are then alulated by
pi

b = pi−1
b +

∑

element

∫
BTDe(δεV P )i d(element) (2.103)The body-loads are aumulated at eah pseudo time step at for all elements thatontain a yielding Gauss point. This is an iterative proess whih is repeated untilno point violates the yield surfae within a given tolerane.2.3.3 Solution strategies2.3.3.1 Constant sti�ness matrixDenoting the previously mentioned equilibrium, strain-displaement and onsti-tutive equations by their abridged forms as already introdued in Eqs. 2.68, 2.67and 2.77, the three sets of equations are represented byAT

σ = −F
σ = Dε

ε = Au (2.104)where A is the strain-displaement operator, σ is the stress tensor, D is theonstitutive stress-strain relationship, ε are the strains and u the displaements.The purpose of the numerial model is to alulate the displaements (and henethe strains) for a given stress resulting from gravity and external loads. Theabove-mentioned set of equations is solved by eliminating σ and ε from Eq. 2.104.This is arried out by inserting the third equation from the set of Eqs. 2.104 intothe seond equation and the result of the latter into the �rst equation:AT
σ = −FATDε = −FATDAu = −F (2.105)The result of this elimination proess is a set of partial di�erential equations53



2 Physial proesses and model oupling
whih are dependent on the ontinuous spae variables u,v and w. In order tosolve these equations the onsidered body is disretized by �nite elements suh asthe prismati element desribed in Capter 2.3.1.1. The ontinuous variables arethen replaed by the appropriate shape funtions.

ui = [N1 N2 N3 N4 N5 N6]




ui,1

ui,2

ui,3

ui,4

ui,5

ui,6




= Nu (2.106)
In Eq. 2.106, Nk are the shape funtions and i = x, y, z.Disretization of the ontinuous variables must be taken into aount for thestrain-displaement operator. Expressing the shape funtions in matrix formyields S =



Nu 0 0

0 Nv 0

0 0 Nw


Nu = Nv = Nw = [N1 N2 N3 N4 N5 N6]

(2.107)
After inserting the latter into Eq. 2.105, the last step is to integrate the shapefuntions (Chapter 2.3.1.2) over spae. This leads to the sti�ness matrix for theonsidered body (Eq. 2.108).MS =

∫ ∫ ∫ ASTD(AS) dx dy dz =

∫ ∫ ∫ BTDB dx dy dz (2.108)The result is a system of linear equations (Eq. 2.109) omprised of the sti�nessmatrix, the external loads, and the displaement vetor, whih must be solvedfor the system. The resulting displaements may then be used to alulate theorresponding strains and stresses within the body.54
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MS u = −F (2.109)

2.3.3.2 Element-by-element tehniques
Regardless of whether the stability analysis is linear or nonlinear, it is neessaryto solve a system of linear equations (Eq. 2.109). This generally takes the formAx = bwhere A is the oe�ient matrix, b is the result vetor and x is the vetor on-taining the unknown system variables. A solution method suh as the Gaussianelimination method ould then be applied to alulate x. This would require a sys-tem matrix for the entire omputational domain, however. Assembling a matrix forthe whole system even using speial storage shemes suh as the skyline tehnique(Bathe, 1996) would be far too expensive, espeially for the three-dimensionalase. In view of this, the element-by-element tehnique was implemented as an al-ternative method in the present study in order to ensure that the required memoryspae is limited to a manageable size. The algorithm used with this tehnique isbased on the method of onjugate gradients desribed by Jennings and MKeown(1992).The steps outlined in the following equation (Eq. 2.110) are performed k timesin order to minimize the di�erene between xk+1 and xk. 55
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uk = Apk

αk =
(rk)T rk

(pk)Tukxk+1 = xk + αkpkrk+1 = rk − αkuk

βk =
(rk+1)T rk+1

(rk)T rkpk+1 = rk+1 + βkpk

(2.110)
where the initial value for p is alulated aording top0 = b−Ax0The vetor x is initialized with a value that should be as lose as possible tothe �nal solution in order minimize the number of iterations. In all operationsexept the �rst in Eq. 2.110 only vetors and salars are involved. The �rstoperation is a matrix-vetor multipliation, whih is performed aording to theabove-mentioned element-by-element tehnique. By this means, the loal produtsof the p vetor and the element sti�ness matrix i are assembled onseutively toform the global result vetor. Summing up the loal results leads to the globalresults: u =

∑MS,i bi (2.111)2.3.3.3 Boundary onditionsA solution of the matrix given in Chapter 2.3.3.1 also requires the spei�ation ofboundary onditions in order to obtain a solution. The spei�ation of boundaryonditions in the onsidered experiments is fairly simply in so far as a mesh point56
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is either allowed to move in a spatial diretion or not. In the ase that a meshpoint is �xed the result is known to be zero. The line and olumn in the matrixorresponding to the node and spatial diretion for a non-moving boundary on-dition may thus be negleted as these are not required for the solution of the otheromponents of the matrix. In the ase a boundary node whih is allowed to movein a spatial diretion, the ontributions for this node are retained in the matrixand the system of equations.In pratie there are two alternative ways of treating the above-mentionedboundary ondition for a �xed node. The �rst variant is to eliminate the or-responding line and olumn from the system of equations so that they are nottaken into aount at all. The variable is then simply set to zero. As an alterna-tive the (non-zero) value of a variable may be presribed by adding a large number(e.g. 1020) to the leading diagonal of the sti�ness matrix in the row orrespondingto the onsidered variable. Additionally, the value of the b vetor in that rowmust be modi�ed by multiplying it with the adapted sti�ness term (Eq. 2.112).
(
Mi,j + 1020

)
φ+ [small terms℄ = [presribed value℄ ×

(
Mi,j + 1020

) (2.112)As a result the onsidered variable will take the value φ = [presribed value℄,provided the [small terms℄ are negligible ompared to the large term added. Thishas the advantage that not only zero but any arbitrary value may be presribedat a given meshpoint.Boundary onditions involving gradients of the unknown are not disussed hereas they are not required in the experiments onsidered in Chapter 3.2.3.4 In�uene of pressure on soil stabilityConsidering wave-indued sour as outlined in Chapter 3.2 leads to the questionof the in�uene of wave pressure loading on soil stability. The soil onsists ofsmall partiles, whereby the stresses resulting from gravity and external loads aretransferred by normal stresses aross the partile ontat surfaes. Shear foresan only exist as frition between the ontat surfaes when a normal stress is57
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present. As the soil is saturated, the voids between the soil partiles are �lledwith water. In a natural environment it is likely that small amounts of gas arepresent in the pores (Tørum, 2007). The gas is onsidered to be part of the liquidand an be taken into aount by altering the ompressibility of the �uid (de Grootet al., 2006). Normal fores are not only transferred by the soil partiles but alsoby the pore water. This means that the e�etive normal stress onsists of thetotal normal stress from the soil skeleton and the pore pressures. In the eventthat the pore pressure inreases and beomes equal to the total normal stress, thee�etive normal stress beomes zero. Consequently, shear fores an no longerbe transferred. Water and sediment then onvert from a former solid state intoa lique�ed state. This liquefation may not only be aused by inreased porepressure but also by a derease in the total stress.In a maritime environment the desribed behaviour is basially due to twodi�erent e�ets. The �rst of these e�ets is due to wave-indued momentarypressure variation whih propagates into the soil and ompresses and deompressesthe �uid/gas mixture. The seond e�et is due to a derease in the pore spaewith no or only slight drainage of the pore �uid. This auses a gradual inreasein the pore pressure, whih results in a residual pressure ontribution whih maypossibly neutralise the total normal stress. The latter e�et is a result of themovement or rearrangement of sediment partiles in a loose soil. Liquefation anonly our if the partile size distribution of the soil satis�es ertain requirements.Firstly, the soil must be �ne enough in order to prevent drainage of the �uid whilepore pressure is aumulated, and seondly, it must be non-ohesive in order thatpartiles an move and rearrange freely. The range of partile sizes whih allowsliquefation to our is shown in Fig. 2.13.Momentary liquefation only ours if the pore �uid is ompressible, i.e. asmall amount of gas must be present in the �uid. Otherwise, the redution inthe e�etive stress is insu�ient to ause a momentary liquefation, even diretlybelow the soil surfae (de Groot et al., 2006). On the ontrary, the ompressiblenature of the �uid permits the �ow and storage of additional water in the poreswhen the external pressure inreases (under the rest). When the pressure redues(under the trough) the additional �uid auses an inreased pressure in the poreswhih lowers the soil stability and may possibly lead to total liquefation.58
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Figure 2.13: Risk of liquefation as a funtion of partile size distribution(Damgaard et al., 2006)Wave-indued liquefation aused by a residual exess pore presssure was stud-ied by Sumer et al. (2006b) in a wave �ume. A loosely-paked silty sediment witha partile diameter of 0.06mm was plaed in the �ume and measurements of thepressure in the soil and the water depth were made. The results of liquefationand ompation were extrated from videotape reordings made during the tests.The observations range from the point in time when waves are introdued up tothe point of soil liquefation and ompation and the ourrene of ripples on thebed. This time series is shown shematially in Fig. 2.14. Diretly after the wavesbegin to propagate through the �ume, the pressure in the soil pores begins to rise.The wave-indued yli shear stress auses the sediment partiles to rearrange,whih results in a derease of pore volume and hene an inrease of pore pressure.When the exess pore pressure (= the di�erene between the hydrostati pressure59
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and the atual pore pressure) attains the total normal stress, the soil lique�es andthe water and soil behave like a liquid.

Figure 2.14: Time series of liquefation and ompation (Sumer et al., 2006a)
The exess pore pressure inreases in the vertial diretion with a maximumat the impermeable base represented by the bottom of the sediment box in theonsidered experiment (f. Fig. 2.15a). As a onsequene, a vertial pressuregradient exists whih drives the pore �uid upwards out of the soil. Reduing theamount of water in the pores leads to settlement and onsolidation of the soilpartiles. This proess begins at the lowest point of liquefation and is followedby an upward movement of the ompation front (f. Fig. 2.15b) until the mud-line is reahed. The proess is aompanied by a derease of pore pressure. Theonsolidation proess additionally leads to a derease in the height of the sedimentlayer.The above-desribed proess of liquefation was simulated by Dunn et al. (2006)using a two-dimensional numerial model. The results were ompared with an ana-lytial solution as well as with the experiments of Teh et al. (2003). The model60
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Figure 2.15: Pressure distribution (a) and depth of ompation front and soil sur-fae (b) (Sumer et al., 2006b)
implements Biot's onsolidation theory (1941) in order to alulate pore pressuresand soil deformation. A detailed knowledge of the soil and its parameters isneessary in order to presribe realisti boundary onditions for the numerialmodel. Although these data were available for the analytial solution as well asfor the onsidered validation experiments, suh detailed information is rare to �ndfor soil in a natural environment or even for laboratory experiments. As suh, thenumber of ases in whih this type of model may be applied is severely limited.61
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2.4 Model ouplingHaving desribed the individual models and the onsidered proesses in the fore-going hapters, the interation of the latter will now be examined in loser detail.The desription whih follows is valid for all of the onduted experiments givenin Chapter 3.All sediment transport and bottom evolution results are based on a �ow periodrepresentative of the �ow regime present at the struture onerned. In the aseof a propagating wave this is learly the wave period, whereas for a steady �ow,this is the period of a wake separation. The periods are held onstant for theentire sour simulation.Presribing regular waves as a boundary ondition is arried out by alulatingthe wave properties by means of a suitable mathematial theory, as desribed inAppendix A. The imposed waves are of a periodi harater, whih means thata stable wave is always bounded by a preeding and a following equal wave. The�rst wave imposed annot be used as a representative wave as it is not stableand is slowly damped while propagating through the hannel. Tests showed thatusually the third imposed wave is stable and gives good results with regard to thefree surfae and veloities. The �rst two waves are thus negleted and are notused for alulating sediment transport and bottom evolution. These are part ofthe initial phase, as outlined in Fig. 2.16.In the ase of a steady �ow the urrent is gradually inreased at the boundaryin order to obtain the �rst result period. After alulating the bottom evolutionfor the �rst period the �ow result from the previous run is projeted onto the newgeometry and then used as the initial value. In the following initial phase of the�ow alulation the veloity adapts to the new (bottom geometry) onditions andthe �ow regime is reonstruted. Afterwards, the next representative period of�ow is simulated and is used as input for the bottom evolution.The result period obtained from the �ow model is used repeatedly for alulatingthe bottom evolution. The number of iterations is limited on the one hand by theextent of bottom evolution, as the alulated shear stress is only valid for smalldeviations of the bottom geometry. On the other hand, a frequent realulationof the �ow is not possible as the �ow simulation is omparatively time intensive.62
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3 Numerial experiments andmodel validation3.1 Flow-indued sour3.1.1 AbutmentLoal sour at abutments has been studied by Radie et al. (2006). A �ow hannelmade of plexiglass (Fig. 3.1) with a length of 5.8m, a width of 40m and a heightof 16m was used for this purpose. The e�etive dut height after installingroughness elements on the bottom upstream and downstream of the sedimentbasin was 15.5m. The top of the hannel was also overed with plexiglass so thatthe hannel ould be pressurised during the tests. Two di�erent types of abutmentswere used, namely a vertial wall (Fig. 3.2) and a trapezoidal abutment with sidelengths of 10m and 8m. The sediment used onsisted of arti�ial ylinders madeof PVC with a median equivalent diameter of 3.6mm. The uniformity oe�ientwas lose to unity and the spei� gravity of the sediment was (ρs − ρ)/ρ = 0.43.A water disharge of Q = 18.5 l/s was used in all of the onduted experiments.This was hosen to math the inipient motion of partiles.In this experiment the hannel was overed with plexiglass. This was taken intoaount in the numerial model by freezing the free surfae at the given waterdepth and presribing a wall boundary ondition. The over as well as the sidewalls were assumed to be rough and a small Nikuradse roughness oe�ient waspresribed at these boundaries. At the bottom the roughness oe�ient was takento be as three times the median partile diameter (ks = 3d50).The numerial sour simulation was performed using di�erent sediment trans-port rate equations. The reason for this is that the results were known to di�er65



3 Numerial experiments and model validation
onsiderably depending on the equation used. The results obtained using theequation of Engelund and Fredsøe were found to agre well with the laboratoryresults regarding the sour depth at the nose of the abutment. The sour depthattained approximately 20m in the laboratory as well as in the numerial expe-riment (f. Fig. 3.4 and Fig. 3.3). The simulated geometry of the erosion hannelof the right of the abutment was found to be too broad and too short, however(Fig. 3.7). The results obtained using the equation of Meyer-Peter and Mülleron the other hand showed better agreement regarding the sour shape. The longerosion hannel to the right of the abutment was similar to the measured shape.Unfortunately, the sour depth was underestimated by about 18%.The sour depth at the orner of the abutment was not orretly predited bythe model regardless of the sediment transport equation used. This is possiblythe result of the oarse spatial disretisation at this loation, whih was optimizedto improve the e�ieny of the omputational sheme. The alternate alulationof �ow and sediment transport may also ontribute to this e�et as well as thefat that an arti�ial sediment with an unnatural spei� gravity was used inthe experiments. The sediment transport rate equation and the equations foralulating inipient motion were derived from measurements and observationsinvolving natural sediment partiles with a muh higher spei� gravity. Thismeans that the implemented equations are inappropriate for the arti�ial sedimentused in the simulations.
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3.1 Flow-indued sour

Figure 3.1: Flow hannel (Ballio et al., 2006)

Figure 3.2: De�nition sketh of the vertial wall (Radie et al., 2006)
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3 Numerial experiments and model validation

Figure 3.3: Temporal evolution of measured sour (Ballio et al., 2006)
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Figure 3.4: Temporal evolution of sour using the transport rate equation of En-gelund and Fredsøe
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Figure 3.5: Temporal evolution of sour using the transport rate equation ofMeyer-Peter and Müller
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3 Numerial experiments and model validation

Figure 3.6: Sour after attaining the equilibrium depth (Radie et al., 2006)
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3.1 Flow-indued sour

Figure 3.7: Sour isolines after 2h using the transport rate equation of Engelundand Fredsøe
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3 Numerial experiments and model validation

Figure 3.8: Sour isolines after 2h using the transport rate equation of Meyer-Peterand Müller

Figure 3.9: Sour hole after 2h45m (Ballio et al., 2006)
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3.1 Flow-indued sour

Figure 3.10: Resulting sour after 1800s using the transport rate equation of En-gelund and Fredsøe 73



3 Numerial experiments and model validation

Figure 3.11: Resulting sour after 3600s using the transport rate equation of En-gelund and Fredsøe74



3.1 Flow-indued sour

Figure 3.12: Resulting sour after 7200s using the transport rate equation of En-gelund and Fredsøe 75



3 Numerial experiments and model validation

Figure 3.13: Resulting sour after 1800s using the transport rate equation ofMeyer-Peter and Müller
76



3.1 Flow-indued sour

Figure 3.14: Resulting sour after 3600s using the transport rate equation ofMeyer-Peter and Müller
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3 Numerial experiments and model validation

Figure 3.15: Resulting sour after 7200s using the transport rate equation ofMeyer-Peter and Müller
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3.1 Flow-indued sour

Figure 3.16: Flow pattern around a ylinder (Melville and Coleman, 2000)3.1.2 Vertial ylinderThe �ow around a irular ylinder (Fig. 3.16) features several e�ets that lead toan inreased shear stress ating on the soil surrounding the struture. A boundarylayer �ow has a vertial pressure gradient whih leads to a downward direted�ow on approahing a vertial pile. This results in a horseshoe vortex, whih isreognised as being one of the main mehanisms promoting sour. The �ow isalso ontrated, whih leads to an inreased veloity on both sides of the ylinder.Vortex shedding tends to onvey the sediment partiles that have been erodeddownstream away from the pile.The �ow around a pile may be desribed by dimensionless parameters. Whereasthe Keulegan-Carpenter number (Eq. 3.3) desribes the �ow around a pile in anosillatory �ow, the Reynold's number desribes the �ow regime at a ylinderapproahed by a steady �ow. This is de�ned by 79



3 Numerial experiments and model validation

Figure 3.17: Flow-indued sour in a laboratory experiment (Eadie and Herbih,1986)(left) and sheme of vertial ross-setion (right)
Re =

U∞ D

ν
(3.1)A vortex system does not develop for a Reynold's number below �ve. Withinreasing Reynold's number (>40), vortex shedding ours and a vortex streetdevelops (Sumer and Fredsøe, 1997). The presented ase of �ow and sour arounda ylinder has a pile Reynold's number of 46000. This means that the wakes arefully turbulent while the boundary layer is still laminar. The thikness of theboundary layer aording to Shlihting (1982) may be approximated by

δ

D
= O

(
1√
Re

) (3.2)where δ is the boundary layer thikness and D is again the diameter of theylinder. The presene of a boundary layer auses deeleration of the �ow lose tothe ylinder wall, and the resulting veloity gradients lead to vorties that ourfor Reynold's numbers greater than �ve.In the ase of an erodible soil the above-mentioned �ow e�ets lead to intensesediment transport lose to the struture. A sour hole develops with slope anglesapproahing the angle of repose. At loations where the slope angle exeeds theangle of repose, sediment sliding ours. This proess ontinues until the slopereturns to a stable ondition. An example of suh a sour hole is shown in Fig.3.17. High slope angles are espeially notieable in the upstream part of the sourhole where the primary vortex is present.80



3.1 Flow-indued sour

Figure 3.18: Experimental setup (Roulund et al., 2005)The presented ase of loal sour around a vertial pile in a steady �ow is basedon the work of Weilbeer (2001), who ompared the results of his numerial modelwith the measurements of Roulund (2000); Roulund et al. (2005). In ontrast tothe work of Weilbeer, a transport rate in diretion transverse to the ating shearstress is also taken into aount in the present study (see Chapter 2.2.5.1). Thesediment transport rate equation of van Rijn was found to yield the best resultsin the ase onsidered.Figure 3.18 shows the experimental setup for the above-mentioned laboratoryexperiment. The �ow hannel was 9.90m long and 3.60m wide. The water depthwas 40m and the averaged veloity in the hannel was given as 46m/s. The10m diameter pile used in this experiment was plaed in a sand pit ontainingsand with a partile diameter of 0.26mm. In the numerial experiment the meshand numerial parameters for the �ow were the same as used by Weilbeer. Theresults of the laboratory experiment are shown in Fig. 3.19. The sour hole is seento have a round shape while the ripples are indiative of live-bed onditions.The results of the �ow simulations are omparable to the results of Weilbeer(2001). Although the turbulene model and numerial parameters are idential,a di�erent advetion method was adopted. In order to redue the numerialdi�usion SUPG (Streamline-Upwind Petrov/Galerkin) method was used in thepresent ase. Fig. 3.20 shows the �ow at a depth of 30m. The horseshoe vortexat the pile and its e�et on the near-bed veloities are learly evident in Fig. 3.21.81



3 Numerial experiments and model validation

Figure 3.19: Flow-indued sour in the experiments of Roulund et al. (2005)This leads to a �ow whih opposes the approahing �ow upstream of the ylinder.As a onsequene, high sediment transport takes plae in this region. This isprimarily direted away from the pile and leads to fast development of the sourhole. The ampli�ation of the shear stress aused by �ow ontration is shown inFig. 3.22. In the present the ampli�ed shear stress is about eight times the shearstress in the undisturbed �ow.As already disussed in Chapter 2.2.5, an existing sour hole has an in�ueneon the diretion of sediment transport. The hange in diretion in a sour hole isshown in Fig. 3.23. Due to the ation of gravity, sediment transport is less radialand more tangential at the pile. The result of the simulation after two hoursis a sour hole with a round shape (Fig. 3.24) resembling the shape observedin the presented laboratory experiment (Fig. 3.19). The sour depth is slightlyoverestimated by the model. The temporal evolution (Fig. 3.25) of the sourhole shows that the dynamis of the proess are not exatly modelled espeiallyduring the initial phase and that the equilibrium depth is attained later than inthe laboratory experiment.
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3.1 Flow-indued sour

Figure 3.20: Flow around the ylinder at d = 0.3m

Figure 3.21: Horseshoe vortex (left) and shear veloities (right) in the numerialsimulation
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3 Numerial experiments and model validation

Figure 3.22: Shear stress ampli�ation fator around the ylinder

Figure 3.23: In�uene of slope on the diretion of sediment transport
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3.1 Flow-indued sour

Figure 3.24: Simulated sour after two hours

Figure 3.25: Temporal evolution of simulated sour
85



3 Numerial experiments and model validation
3.2 Wave-indued sourThe �ow around a ylinder that is exposed to an osillatory �ow may be ha-raterised by a dimensionless parameter, namely the Keulegan-Carpenter (KC)number (Eq. 3.3). In this equation Um is the maximum near bed veloity, Twis the period of the osillatory �ow and D is the diameter of the pile. The KCnumber desribes the ratio of the motion of water partiles to the diameter of theylinder. Small KC numbers thus indiate that the motion of water partiles issmall ompared to the diameter of the pile. Flow separation does not our forvery small KC numbers.Large KC numbers on the other hand indiate a distint motion of partileswith �ow separation and the possible ourene of vortex shedding. If the �owperiod is long enough, a vortex system similar to the steady �ow ase (see Chapter3.1.2) developes at the pile for a maximum of half a �ow period. The �ow andvortex shedding regimes to be expeted for di�erent KC numbers may be foundin Sumer and Fredsøe (1997).

KC =
UmTw

D
(3.3)3.2.1 Waves with KC numbers < 6The �rst example of the numerial modelling of wave-indued sour is based onexperiments by Sumer and Fredsøe (2001a) arried out in a 10.6m wide and 8mlong wave �ume (Fig. 3.26). A ylinder of 1m diameter was plaed in a sand pit.The median diameter of the sediment grains was 0.2mm. Waves of di�erent lengthand height were used in the experiments. The KC number was in the range of 0.08to 0.61 for the sour experiments and 0.34 to 1.1 for the rigid bed experiments.The veloities from the numerial model were veri�ed by a rigid bed experimentwith a KC number = 1.1 (Fig. 3.27). The veloities were measured at a distaneof 10m from the ylinder surfae. A sour simulation was arried out with a KCnumber of 0.61, whih represents the highest available value of the KC numberfor whih sour measurements were made. Beause the sediment transport ratesand hene the bottom evolution were very small, it was possible to repeatedly use86



3.2 Wave-indued sour

Figure 3.26: Wave hannel for experiments with KC < 6 (Sumer and Fredsøe,2001a)the �ow results of one wave over twenty minutes of sediment transport simulation.The overall simulation lasted ten hours.The results of the numerial experiment for the verifying of the veloities areshown in Fig. 3.28. The magnitude of the tangential veloity as well as the phaseare in good agreement with the measured results. Considering the radial veloityvalues, a small deviation is evident, espeially during the �rst half of the waveperiod. This is apparently due to re�etions in the simulated wave hannel, whihwere mainly absorbed in the laboratory hannel. As predited, no horseshoevortex was formed. The wave-indued �ow is ontrated along the sides of theylinder, whih leads to higher veloities in this region. The resulting sedimenttransport is still very small, however, owing to the overall low veloities and theabsene of a horseshoe vortex. The sediment transport rate equation of Chengwas therefore used in this experiment, as Cheng's equation permits a alulationof transport rates even when only a very small shear stress is present at the87



3 Numerial experiments and model validation

Figure 3.27: Measured veloities (Sumer and Fredsøe, 2001a)
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3.2 Wave-indued sour

Figure 3.28: Simulated veloities
bed. Figure 3.30 shows the resulting sour pro�le after a simulation of ten hours.Although the sour depth losely agrees with the results from the laboratoryexperiment, the sour hole pro�le is slightly di�erent. Although the sour holeis loated downstream of the ylinder, it has a di�erent radial extension. Thisis presumably due to the inreasing oarseness of the spatial disretisation withinreasing distane from the ylinder. 89



3 Numerial experiments and model validation

Figure 3.29: Measured sour pro�le (Sumer and Fredsøe, 2001a)

Figure 3.30: Simulated sour pro�le90



3.2 Wave-indued sour
3.2.2 Waves with KC numbers > 6
Assuming that the veri�ation of the �ow model for waves arried out in Chapter3.2.1 is also valid for experiments with a muh larger KC number, the followingwave sour simulation based on the experiments of Sumer et al. (1992) was per-formed. In ontrast to the previous experiments, a horseshoe vortex is expetedover a ertain time period during a half wave yle for a KC number > 6.The 10m diameter pile used in this experiment was plaed in 28m long and 4mwide wave �ume. Waves with di�erent KC numbers were used in the experiments.Wave sour for a KC number of 24 and a pile diameter of 10m was simulated bythe numerial model and the results were ompared to the measurements of Sumeret al. (1992). The median diameter of the sediment grains was 0.18mm. The �owresults for a single wave were repeatedly used to alulate sediment transportover a period of one minute. The �ow over the soured bed was subsequentlyrealulated.Waves with a KC number > 6 produe a horseshoe vortex (Sumer and Fredsøe,2002) around the struture similar to the vortex obtained for a steady urrent.This behaviour is orretly reprodued by the numerial model (Fig. 3.31). Asshown by the results, the vortex is present for less than half of the wave period.Beause sediment transport rates inrease with the developing horseshoe vortex,the shape of the sour hole is more similar to that given by experiments with asteady urrent than the shape obtained for a small KC numbers (KC<6). Thetransport rate equation of van Rijn was applied in this experiment, whereby onewave was used for one minute of sediment transport.Unfortunately, this experiment provides no information onerning the temporalevolution and shape of the sour hole. Only the �nal sour hole depth is known.The non-dimensional equilibrium sour depth (S/D) in the laboratory experimentwas 0.31 for the given KC number of 24, whereas a sour depth of 0.32 was attainedin the numerial simulation. 91



3 Numerial experiments and model validation

Figure 3.31: Resulting bottom veloities (left) and wave position (right)
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3.2 Wave-indued sour

Figure 3.32: Resulting sour shape3.2.3 Large Wave Channel experimentsIn 2006 and 2007 large-sale wave sour experiments were arried out in the LargeWave Channel (GWK) of the Coastal Researh Centre (FZK) in Hanover, Ger-many. This wave �ume is 307m long, 7m deep and 5m wide. The diameter ofthe pile used in the investigation was 0.55m (see Figs. 3.33 and 3.34). Beausethe model sale is 1:10, sale e�ets regarding the wave-indued �ow and �nesands are minimized (Grüne et al., 2006). The median diameter of the sedimentgrains used in the experiment was 0.33mm. Irregular waves were used in order tosimulate sour development in a natural environment. The lengths and heightsof the waves were determined from the Jonswap (Joint North Sea Wave Projet)spetrum, whih was derived from wave measurements in the North Sea in 1968and 1969. The spetrum was represented by 500 waves generated by a wavemaker.By repeating this spetrum twelve times, a total number of 6000 waves were gen-erated for test series 2 and 3. In test series 1 and 4 the total number of waveswas 9000 and 6500, respetively. The tests were arried out using four di�erent93



3 Numerial experiments and model validation

Figure 3.33: Large Wave Channel (Grüne et al., 2006)

Figure 3.34: Large Wave Channel: position of pilespetrum parameters (see Table 3.1).Veloities and free surfae levels were measured near the bottom in an undis-turbed area lose to the pile. In Table 3.1 d is the water depth, dsb the bottomheight, Hs the signi�ant wave height and Tp the wave peak period. Theresults shown in Table 3.2 represent the measured data. These were alulatedfor a full spetrum (i.e. 500 waves) and afterwards averaged for the omplete testseries (i.e. 9000/6000/6500 waves). Hmax is the maximum wave height, H1/3 isthe signi�ant wave height (i.e. the average of 33% of the highest waves) and Hmis the mean value of all wave heights. Analogous to the wave heights vmax is the94



3.2 Wave-indued sour
No d[m] dsb[m] Hs[m] Tp[s]1 4.15 2.0 0.75 5.042 4.15 2.0 0.80 6.663 4.15 2.0 0.90 7.604 4.15 2.0 1.00 8.60Table 3.1: GWK sour test parametersmaximum measured veloity, vm is the mean veloity, v1/3 is the average veloityof 33% of the highest veloities and Tp is the measured peak period.

No Hmax[m] H1/10[m] H1/3[m] Hm[m] vmax[m/s] v1/3[m/s] vm[m/s] Tm[s] Tp[s]1 1.53 1.12 0.85 0.57 1.31 0.82 0.53 4.58 5.142 1.74 1.36 1.03 0.64 1.85 1.04 0.67 5.61 6.593 1.7 1.48 1.21 0.77 1.89 1.21 0.75 6.47 7.684 2.2 1.76 1.4 0.9 2.4 1.44 0.9 7.63 8.94Table 3.2: Results of the GWK sour tests
Figs. 3.35 to 3.40 show the results of test series 3 after 3000 waves. The sourhole attains a depth of approximately 26m and the deepest part is loated down-stream of the pile. The sour depth after 6000 waves was 25m. The deepest sourwas measured in test series 4, whereby the equilibrium sour depth attained 34mafter 6500 waves (Oumerai et al., 2007). In test series 2 and 3 the equilibriumsour depth was already attained after approximately 3000 waves.
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Figure 3.35: Test series 3: sour after 3000 waves (plan view)

Figure 3.36: Test series 3: sour after 3000 waves (zoom)

Figure 3.37: Test series 3: sour after 3000 waves (downstream)
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3.2 Wave-indued sour

Figure 3.38: Test series 3: sour after 3000 waves (upstream)

Figure 3.39: Test series 3: sour after 3000 waves (side view)
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Figure 3.40: Test series 3: sour after 3000 waves (side view)
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3.2 Wave-indued sour
Only a part of the full hannel length was used in the numerial model in orderto redue omputation time. The wave inlet was positioned 10m in front of thepile and the boundary onditions for the numerial model were as followed: thethree-dimensional veloity �eld and water depth were presribed, whereas thedynami pressure was unonstrained at the wave inlet. Aording to Sumer et al.(1999) the wave parameters for a regular wave whih are representative for a wavespetrum may be approximated by H = Hs/

√
2 and T = Tz, where Tz is the zerouprossing period and Hs is the signi�ant wave height. Tests showed that inthe onsidered ase this approximation leads to an underestimation of the sourdepth. The wave height H1/3 and the peak period Tp were therefore used forde�ning a representative wave. The �ow results for one wave were used for twohundred waves of sediment transport simulation. The total number of ouplingsbetween �ow and sediment transport was hene thirty. The sediment transportrate was alulated using the equation of Engelund and Fredsøe.The results of the numerial experiments for test series three are shown in Figs.3.41-3.44. The �rst tests were arried out with the sediment ramp inluded in thenumerial model. The results show that the waves beome steeper and shorterwhen passing the ramp. As this shape is not stable, the waves return to theiroriginal shape one the ramp has been passed. Although this e�et is not totallythrough at the pile, it is inluded in the measurements of Tp. The results ofthe numerial simulations show that the di�erene in shear stress is small whenthe ramp is inluded in the numerial simulation. In view of this, the ramp wasnegleted in the sour alulations.The results of the sour simulation are shown in Figs. 3.43 and 3.44. Theshape of the sour hole di�ers signi�antly from the shape obtained in the �umeexperiments. This ould be due to the fat that a regular wave was used insteadof a wave spetrum. The deepest point of the sour hole is loated along theside of the pile rather than downstream. This is where the highest shear stressesour in the numerial model. The temporal evolution progresses very rapidly forthe �rst three hundred waves and then slows down. This may be aused to someextent by the arrival of sediment from upstream of the pile. This may also be thereason for the dereasing sour rate in the temporal range of �ve hundred waves.The oupling period might also have an in�uene on this model behaviour. The99
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Figure 3.41: Simulated wave seriessour depth after 3000 waves is underestimated, presumably beause the waveparameters are derived from spetrum parameters and the resulting wave is notintense enough to produe the a representative sediment transport obtained in the�ume experiments.
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3.2 Wave-indued sour

Figure 3.42: Simulated wave series (side view)
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3 Numerial experiments and model validation

Figure 3.43: Simulated sour after 3000 waves

Figure 3.44: Temporal evolution of sour in the numerial simulation
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3.3 Stability analysis of a sour hole
3.3 Stability analysis of a sour holeModelling the bottom by means of a �nite element model provides an opportunityto examine the response of the model to hanging geometry as well as to the shearstresses a�eting the surfae layer. The developing sour leads to steep slopeswhih beome unstable when the angle of repose is reahed. This behaviour may besimulated with the aid of the �nite element model, thereby permitting an analysisof the loation and depth of instabilities. The bottom surfae geometry exists as amesh of triangles. In order to obtain a three-dimensional mesh, a horizontal layerof triangles with the same element oordinates as the surfae layer is reated. Thislayer is loated beneath the lowest surfae mesh point at about 20% of the heightof the latter. The spae between the two layers is �lled with a onstant numberof wedge elements in the vertial diretion. The �nite element model of the soilhas di�erent degrees of freedom at the boundaries. Whereas no displaements arepermitted over the bottom layer, the surrounding boundary faes ylinder nodesare allowed to move in the vertial diretion. Simulations with the �nite elementmodel of the soil were arried out in order to analyse slope stability.3.3.1 Flow-indued instabilityThe parameters used in the simulations were Young's modulus E = 1 · 105kN/m2and Poisson's ratio ν = 0.3. The unit weight of the material was given as γ =

13kN/m3. As, aording to Krantz (1991); Shellart (2000), a small amount ofohesion is present even for granular materials, a ohesion fator of c = 0.5kN/m2was assumed. The depth of the sour hole after one hour of sediment transportwas found to be 12.5m. The �nite element simulations were arried out fromthis point in time. The plasti strains pxz are shown in Fig. 3.45. As a resultof experiments by Roulund et al. (2005), sand slides were found to our whenthe slope angle was two degrees greater than the frition angle. Figure 3.46 showsthat for a di�erene of two degrees between the slope and the frition angle, strongplasti strains our on the upstream as well as on the downstream slope whenthe atual slope angle exeeds the frition angle. As the solution algorithm doesnot onverge under these onditions, this is expeted to be the regions where most103
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Figure 3.45: Plasti deformations for β = φof the sand sliding takes plae. As illustrated by Fig. 3.47, the intensity of thedeformations is onsiderably less if the frition angle is two degrees lower than theatual slope angle. In this ase the model onverges and regains a stable onditioneven though plasti deformations our.
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3.3 Stability analysis of a sour hole

Figure 3.46: Plasti deformations for β = φ+ 2◦

Figure 3.47: Plasti deformations for β = φ− 2◦
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Figure 3.48: Displaement vetors
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4 ConlusionsA three-dimensional �ow model apable of simulating �ows with and without afree surfae was oupled with a model of sediment transport, bottom evolutionand soil stability analysis. The �ow model presented is apable of simulating asteady �ow or a propagating wave for the purpose of alulating the �ow �eld inthe viinity of a struture. The solver is based on the Reynold's averaged Navier-Stokes equations whereas losure of the set of equations is ahieved by means ofthe k-ω turbulene model. The model was validated using experimental data forsteady �ows and for a propagating wave passing a vertial ylinder. In the ase ofa propagating wave the boundary onditions were alulated by �rst order wavetheory or by stream funtion theory. The latter implements a numerial shemefor alulating wave properties suh as the free surfae and orbital veloities forany required order. By this means it is possible to presribe highly nonlinearwaves at the open model boundary.The free surfae sheme was found to be highly appliable to steady �ows andpropagating waves. The results obtained for the free surfae, however, depend verymuh on the quality of the veloity �eld. Depending on the advetion sheme used,small instabilities in the veloity �eld result in disontinuities at the free surfae.The use of the method of harateristis as an advetion sheme yielded resultswhih led to a stable alulation of the free surfae without anomalies. The fatthat the vortex system at the ylinder was also su�iently resolved meant that thealulated shear stress at the bottom was suitable for appliation in the sedimenttransport model.Using the shear stress at the bottom omputed by the �ow model, a sedimenttransport rate may be alulated and subsequently inserted in the bottom evo-lution equation. The quality of the results of this model is highly dependent onthe equations used for alulating the sediment transport rate. This is espeially107



4 Conlusions
the ase when simulating sour, as this is an extreme ase with regard to shearstress and hene bottom evolution. Good results were obtained using the sedi-ment transport rate equation of Cheng for the ase of small shear stresses ausedby short waves. In the ase of high shear stresses the equation of Engelund andFredsøe was found to be more suitable.The simulation of sliding sediment is neessary in order to realistially modelthe bottom geometry. Adjustments for the ineption of motion and the sedimenttransport rate at slopes improve the original equations in suh a way that sandsliding is less intensive with regard to the number of iterations required, eventhough it is still neessary. The resulting sour geometry is therefore also hara-terized by this algorithm, whih depends on one soil parameter.The oupling of �ow and sediment transport was arried out by using a repre-sentative period of �ow results for several sediment transport omputations. Theperiod and number of re-used �ow results were determined manually in orderto ontrol the number of required ouplings. The former were hosen so as tominimise the bottom evolution during eah oupling period prior to the next �owalulation. Computation time, on the other hand, was a limiting fator regardingthe number of realisable ouplings.The sediment transport model was enhaned by a �nite element model in orderto analyse bottom stability. The horizontal mesh was extended in the vertialdiretion to form a three-dimensional mesh onsisting of wedge elements. A linear-elasti solver was ombined with a failure riterion and a viso-plasti method inorder to alulate non-linear deformations. Several soil parameters as well as thebottom geomtetry are taken into aount in this model in order to determine soilstability. By this means it is possible to loate zones of total failure more preiselythan would otherwise be possible basd on a omparison between the atual slopeangle and the frition angle.The desribed model was used to simulate di�erent laboratory experiments on�ow and wave-indued sour. Simulations were arried out for a vertial ylinderand an abutment in a steady �ow, whereby the results of experiments on shortand long waves were used to validate the model. Furthermore, the sour resultingfrom a wave spetrum was used as a test ase for the numerial model.108



Simulations involving short waves indiate that no horseshoe vortex is formed ata vertial pile for a Keulegan-Carpenter (KC) number of less than six. Sedimenttransport in the proximity of the struture in this ase is solely dependent on wave-indued near-bed veloities. This leads to omparatively small transport rates. Inthis ase the best results were obtained using a transport rate equation that wasnot developed on the assumption of a ritial shear stress for the ineption ofpartile motion. The applied transport model permits the alulation of smalltransport rates even when the shear stress is very small. The results show goodagreement with measurements with regard to both sour depth and shape.When a long wave with a KC number greater than six passes a pile, the wave-indued �ow is intense enough to produe a horseshoe vortex system. This leadsto a situation whih is omparable to steady �ow onditions present for less thanthe length of the trough or rest. As sediment transport is dominated by this �owe�et, the sour shape is more similar to the sour shape produed by a steady�ow than by a wave with a KC number less than six.The �ow-indued sour simulations indiate that the sediment transport rateequation has a signi�ant in�uene on the results. This is very obvious from theresults of the abutment sour. Using the equation of Meyer-Peter and Müller led togood agreement with measurements regarding the �nal sour shape, whereas theequation of Engelund and Fredsøe resulted in an equilibrium sour depth similarto that observed in laboratory experiments. Although the sour depth was slightlyoverestimated for the ase of a ylinder in a steady �ow, the omputed shape ofthe sour hole mathed the measurements fairly well.The bottom geometry of a �ow-indued sour hole was used for analysing soilstability. The zones of erosion are then indiated by regions where strong plastideformations our. In the ase of total failure the solution algorithm fails toonverge as no stable ondition an be found. Comparing the alulated erosionzones with the riterion of the sand-slide algorithm shows that the results of thetwo approahes di�er with regard to the areas a�eted. Although the �nite ele-ment stability model is assumed to be more aurate regarding the determinationof erosion zones, the fat that it is three-dimensional plaes a high burden onomputation time. In addition, the need for more model parameters than just thefrition angle annot always be ful�lled. Consequently, the assumption of missing109



4 Conlusions
parameters has an arti�ial in�uene on the results.The results of the presented numerial simulations of �ow and wave-induedsour were found to be in good agreement with laboratory experiments. Furtherimprovement of the results ould be ahieved by inreasing number of ouplingsbetween �ow simulations and sediment transport omputations in order to takeaount of the hanges in the bed geometry more frequently. The use of a �niteelement model of the soil as a riterion for erosion and sand-slides seems to beappropriate, espeially if the in�uene of pressure is also taken into aount.
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A Wave theoriesAn osillatory �ow, suh as the �ow aused by a propagating wave, may be de-sribed by means of di�erent omplex mathematial theories. Although the linearor Airy wave theory is used very extensively, it does have limitations when it omesto shallow water or deep water, or waves with high steepness. Nevertheless, thesimpliity and expliitness of the theory is an advantage over more omplex the-ories suh as the noidal wave theory of Korteweg and De Vries (1895) or streamfuntion theory (Dean, 1965). Although the latter must be evaluated with the aidof a numerial sheme, whih is a drawbak in terms of simpliity, it is neverthelessvery versatile, as will be shown in Chapter A.2.A.1 Linear wave theoryWaves are desribed by several parameters. The main parameters are the lengthand height of the wave and the water depth in whih the wave is propagating.Other parameters suh as wave-indued veloities and dynami pressure may bederived from the above-mentioned quantities. Figure A.1 shows the sheme of apropagating wave. The length of a wave is de�ned by the distane between tworests or troughs, respetively. The wave height is denoted by H and the waterdepth by h. η(x, t) desribes the position of the free surfae in spae and time.The shape of the illustrated wave is derived from linear wave theory and thereforetakes the form of a sinusoidal osillation (Eq. A.8). By plaing the origin of theoordinate system at the still water level, the bottom is denoted by z = −h.The basi assumptions in linear wave theory are that the �ow is invisid, theamplitude is small relative to the water depth, and the �ow �eld is irrotational.No shear stress an be generated in the �ow itself but only in the proximity of a111



A Wave theories
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Figure A.1: Wave parametersbottom boundary. In shallow water the wave motion may extend to the bottom,thereby generating a small boundary layer with rotational �ow. Beause this layeris very thin and its in�uene on wave motion is very slight, it is negleted in theequation of motion. The solution of the �ow and pressure �eld is given by thepotential funtion (Eq. A.1) where φ is the veloity potential.
∇2φ =

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (A.1)A di�ulty that arises in the appliation of linear wave theory onerns theimposition of boundary onditions. These may be expressed in the form of threeequations. In aordane with Fig. A.1, η is the perturbation from the mean waterlevel. The kinemati boundary ondition states that a �uid partile at the freesurfae remainsat this loation (Eq. A.2). Using the veloity potential instead ofveloities leads to Eq. A.3.
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at z = η (A.3)The seond boundary ondition states that the pressure at the free surfae isonstant. This is referred to as the dynami boundary ondition. Applying the112



A.1 Linear wave theory

Figure A.2: Wave theories and their appliation range (Komar, 1998)Bernoulli equation leads to
∂φ

∂t
+
p

ρ
+

1

2
∇φ · ∇φ+ gη = F (t) (A.4)where p is the pressure at z = η and ρ is the �uid density. Presribing zero �uxat the bottom boundary (Eq. A.5) then results in

∂φ

∂z
= 0 at z = −h (A.5)By ombining Eq. A.1 with the boundary onditions given by Eqs. A.2-A.5,Stokes assumed that the solution of the �nal equation ould be expressed by aFourier series. Linear (Airy) wave theory uses only the �rst term of this series,whih leads to Eq. A.6.

φ(x, z, t) =
gH

2ω

cosh k(z + h)

cosh kh
cos(kx− ωt) (A.6)In the following equations θ = (kx − ωt) desribes the phase angle, i.e. theposition in spae and time where the equations are evaluated. Here, k = 2π/L is113



A Wave theories
the wave number. The angular frequeny may be alulated from the dispersionrelationship, whih desribes the relationship between the wave period T and thewave length L.

ω2 = gk tanh(kh) (A.7)The free surfae takes the form:
η =

H

2
cosθ (A.8)The veloities and pressures in the vertial and horizontal diretion (Eqs. A.9and A.10) are derived from the �ow potential funtion (Eq. A.6). The veloityperpendiular to the x-z plane ist onstantly zero.

u =
πH

T

cosh(k(z + d))

sinh(kd)
cosθ (A.9)

w =
πH

T

sinh(k(z + d))

sinh(kd)
sinθ (A.10)

p = ρg

(
η
cosh(k(z + d))

cosh(kd)
− z

) (A.11)In linear wave theory it is assumed that the boundary onditions are ful�lledat the still water level. The equations resulting from this theory are not valid forpositive values of z. Taking this into aount, Chakrabarti (1971) developed anexpression (Eq. A.12) for the pressure distribution whih solves the problem andful�lls the dynami boundary ondition at the free surfae. Unfortunately, theLaplae equation is no longer ful�lled at every wave position.
pmod = ρg

(
η
cosh(k(z + d))

cosh(k(d+ η))
− z

) (A.12)Modern measurement tehniques provide a more preise knowledge of wavepartile veloities. Wheeler (1970) found a similar expression (Eq. A.13) to adaptpartile veloities to measured values. In the so-alled �strething method� anadditional term is introdued for horizontal veloities. Although the boundary114



A.2 Stream funtion theory
onditions at the free surfae are no longer ful�lled, they are still valid at thebottom. Using this strething method also for vertial veloities again leads to asituation where the Laplae equation is not ful�lled at every wave position.

umod =
πH

T

cosh
(
k(z + d) d

d+η

)

sinh(kd)
cosθ (A.13)A.2 Stream funtion theory

Figure A.3: Best �t for the free surfae (Komar, 1998)
Using Airy wave theory to desribe an initial wave in a hannel is quite onve-115



A Wave theories

Figure A.4: Best �t for the free surfae inluding stream funtion theory (Komar,1998)
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A.2 Stream funtion theory
nient owing to its expliit harater and easily omprehensible formulation. Un-fortunately, the theory is only valid when dealing with small amplitude waves suhas those desribed in Chapters 3.2.1 and 3.2.2. For waves in very shallow or deepwater or for waves with a high steepness, the appliation of other theories is moreappropriate. The reason for this is the poor �t of the dynami free surfae bounda-ry onditions of the Airy theory in suh ases (Fig. A.3). As a onsequene of thelatter, the alulated waves are unstable. In the ase of shallow water the noidaltheory (Korteweg and De Vries, 1895) and the solitary wave theory (Boussinesq,1872) yield good results for wave kinematis, whereas in deep water Stokes' theoryof higher order proves to be more appliable (Figs. A.2 and A.3).Extending the above-mentioned theories to a higher order beomes quite di�ultand inonvenient. The stream funtion wave theory developed by Dean (1965)overomes these problems. The underlying equations of this theory, whih maybe evaluated numerially to any required order, may be represented by a salarfuntion whih is easy to handle and permits a alulation of the veloity vetor�eld.Eqs. A.14 and A.15 represent the linear form of the veloity potential andthe stream funtion, respetively. The veloity �eld may be determined from thepotential ψ of an irrotational and inompressible �ow. A stream funtion exists forall two-dimensional �ows (Dean and Dalrymple, 1984). These funtions desribethe �ow rate in the longitudinal and transverse diretion, respetively.

φ(x, z, t) = −H
2

g

ω

cosh k(h + z)

cosh kh
sin(kx− ωt) (A.14)

ψ(x, z, t) = −H
2

g

ω

sinh k(h + z)

cosh kh
cos(kx− ωt) (A.15)The fat that the isolines of onstant veloity potential and onstant streamfuntion are orthogonal means that the produt of the gradients of both funtionsis zero:

∇ψ · ∇φ = 0 (A.16)This is also evident from Eqs. A.14 and A.15, whih have a phase shift of π/2.117
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With regard to veloities, the stream funtion and the veloity potential arerelated by

u = −∂φ
∂x

= −∂ψ
∂z

w = −∂φ
∂z

= −∂ψ
∂x

(A.17)In order to obtain an expression for the stream funtion whih is not timedependent, the oordinate system is moved with the wave elerity C = L/T . Thisimplies that the wave form travels without a hange of shape (Dean, 1965). Thesteady version of the stream funtion is therefore
ψ(x, z) = Cz − H

2

g

ω

sinh k(h+ z)

cosh kh
cos kx (A.18)The boundary onditions for the stream funtion are basially the same as thoseof the Airy wave theory. Firstly, the Laplae equation must be ful�lled throughoutthe �uid (Eq. A.19).

∇2ψ = 0 (A.19)Negleting the pressure at the free surfae, and without time dependeny, thedynami free surfae boundary ondition is
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+ gη = QB (A.20)where QB is the Bernoulli onstant.The kinemati free surfae boundary ondition states that the motion of thewater surfae must be onsistent with the veloities of the water partiles at thefree surfae (f. Eq. A.3). Again without the time dependeny the boundaryondition may be written as
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(A.21)As no �ux is permitted through the bottom boundary, the following holds:118



A.2 Stream funtion theory
∂ψ

∂x
= 0 at z = −h (A.22)Besides the boundary onditions, a representation of the stream funtion whihpermits an evaluation of any order is required. The generalized form of the streamfuntion of N th order in a steady rendered oordinate system takes the form

ψ(x, z) = Cz −
N∑

n=1

X(n) sinh {nk(h+ z)} cos nkx (A.23)In order to obtain the �rst order solution (f. Eq. A.15) the oe�ient X(1) is
X(1) = −Hg

2ω

1

cosh kh
(A.24)The kinemati boundary ondition is ful�lled by default when applying streamfuntion theory, as it states that the free surfae must be a streamline. In order toalso ful�l the dynami boundary ondition, the X(n) oe�ients must be hosen insuh a way as to ensure that this ondition is satis�ed. This is ahieved numeriallyby splitting the free surfae of the wave into I disrete points. The dynamiboundary ondition is then evaluated at eah point I, thereby yielding a loalvalue of the Bernoulli onstant QBi

(Eq. A.25) whih must be equal to the globalonstant QB.In order to alulate the values of QBi
, the X(n) oe�ients must be known.Otherwise the veloities and the free surfae in Eq. A.25 an not be determined.This results in an iterative proedure in whih the X(n) oe�ients and the QBionstants are alulated alternately until the boundary ondition is satis�ed.
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+ gηi = QB (A.25)With eah iteration the boundary ondition error dereases. For an exat so-lution this error would be zero. In the present solution sheme the iteration isrepeated until the error is su�iently small. A measure for the error is E1 whihis desribed by 119
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E1 =

2

L

∫ L/2
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∫ L/2

0

QBi
dx (A.27)The oe�ients resulting from the iterative proedure must lead to a zero meanof the free surfae η(x):
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η(x) dx = 0 (A.28)In order to desribe the boundary onditions in a numerial model using theresults of stream funtion theory, the length of the wave L and the value of thestream funtion ψ(x, η) must be determined. As desribed by Dean and Dal-rymple (1984), this is ahieved by applying the method of Lagrange multipliers(Hildebrand, 1965). The objetive funtion
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] (A.29)in whih λ1 and λ2 are the Lagrange multipliers, must be minimized. This isa nonlinear equation whih is solved by expanding the equation with a trunatedTaylor series:
Oj+1

f = Oj
f

N+2∑

n=1

∂Oj
f

∂X(n)
∆Xj(n) (A.30)The value of ∆Xj(n) represents a slight orretion of Xj(n) in the jth iterationstep. Minimizing the expanded objetive funtion leads to a set of linear equationswhih may be solved using a suitable linear equation solver. Taking the orretionof ∆Xj(n) into aount in the next iterative step leads to

Xj+1(n) = Xj(n) + ∆Xj(n) (A.31)This proedure is repeated until the result of the objetive funtion Oj+1
f is su�-iently small.
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NomenlatureGreek
β Atual bottom slope
η Free surfae position
γ Unit weight
γij Shear strains
ν Visosity
νP Poisson's ratio
νt Turbulent visosity
ω Turbulent dissipation
φ Critial slope angle
ρ Density
σ Normal stress
σ Stress
τB Bottom shear stress
τb,cr Critial bed shear stress
τij Shear stress
θ Shields parameter 121
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θcr Critial Shields parameter
ε Turbulent dissipation
εi Extensional strainsLatin
c Cohesion
D∗ Sediment grain parameter
dm Sediment mean diameter
d50 Median grain diameter
E Young's modulus
G Shear modulus
g Gravity
h Water depth
Hs Signi�ant wave height
H1/3 Average of 33% of the highest waves
Hmax Maximum wave height
k Turbulent kineti energy
ks E�etive grain roughness
KC Keulegan-Carpenter number
L Wave length
Ni Shape funtion
p Pressure
qs Sediment �ux122



A.2 Stream funtion theory
S Free surfae
s Sediment grain size
T Wave period
t Time
Tp Wave peak period
Tw Wave period
Tz Zero uprossing wave period
u Flow veloity
u∗ Shear veloity
ub Sediment partile veloity
ui Displaement vetor
Um Near bed veloity
v1/3 Average of 33% of the highest veloities
vmax Maximum veloity
Wi Weighting funtion
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